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Abstract—Triangle counting is a graph algorithm that calcu-
lates the number of triangles involving each vertex in a graph.
Briefly, a triangle encompasses three vertices from a graph, where
every vertex possesses at least one incidental edge to the other
two vertices from the triangle. Consequently, list intersection,
which identifies the incidental edges, becomes the core algorithm
for triangle counting. At the meantime, attracted by the enor-
mous parallel computing potential of Graphics Processing Units
(GPUs), numerous efforts have been devoted to deploy triangle
counting algorithms on GPUs.

While state-of-the-art intersection algorithms, such as merge-
path and binary-search, perform well on traditional multi-core
CPU systems, deploying them on massively parallel GPUs turns
out to be challenging. In particular, merge-path based approach
experiences the hardship of evenly distributing the workload
across vast GPU threads and irregular memory accesses. Binary-
search based approach often suffers from the potential problem
of high time complexity. Furthermore, both approaches require
sorted neighbor lists from the input graphs, which involves
nontrivial preprocessing overhead. To this end, we introduce
H-INDEX, a hash-indexing assisted triangle counting algorithm
that overcomes all the aforementioned shortcomings. Notably, H-
INDEX achieves 141.399 billion TEPS computing rate on a Protein
K-mer V2a graph with 64 GPUs. To the best of our knowledge,
this is the first work that advances triangle counting beyond the
100 billion TEPS rate.

I. INTRODUCTION

Triangle counting gains popularity from social network
analysis, where it is exploited to detect communities and mea-
sure the corresponding cohesiveness [12], [23]. Particularly,
one can use triangle counting to measure the robustness of
the graph - the deletion of an edge in a triangle will not
result in the disconnectedness of these three vertices. And
triangle counting is also a primary routine for local and global
clustering coefficient analysis of a network [20], [21], [13].

Triangle counting can be formulated into problems from two
different domains, that is, graph computing and graph mining.
The former domain further encompasses vertex and edge-
centric approaches [14], [19], [16], [7]. The vertex-centric
one iterates through each vertex, fetches its neighbors, and
counts the pair of neighbors that possess intermediate edge(s),
while the edge-centric option iterates through each edge
and counts the common neighbors originated from the
source and destination vertices of the edge. In graph mining
domain, one will first find all open triangles through tree-based
prune and subsequently verify whether there exists an edge
from the graph that can complete this triangle [5].

Given edge-centric approach outperforms the other alterna-
tives [12], [11], [22], intersecting two sorted neighbor lists

to count the common neighbors becomes the key for trian-
gle counting. Particularly, there are two mainstream designs
on this track, that is, merge-path and binary-search based
methods. Assuming two neighbor lists - M and N - are
at size of |M | and |N |, where |M | ≤ |N |, the time com-
plexities of merge-path and binary-search based designs are
O(|M |+ |N |) [8], [9] and O(|M | · log|N |) [12], respectively.
Therefore, binary-search based approach is deemed more
efficient when |M | >> |N |. However, the popular edge
orientation method [10] will substantially shrink the difference
between M and N , leading merge-path to be more efficient,
in terms of time complexity, than binary-search based alter-
native. Surprisingly, TriCore [12] demonstrates that binary-
search based design is significantly faster than the merge-path
based one, blaming the overhead of properly distributing the
workload across GPU threads in merge-path based method, as
well as its unfriendly memory access patterns.

For the completeness of related work review, we also briefly
discuss other approaches. For instance, matrix multiplication
based design [24], [4], linear algebra-based [17] and subgraph
matching [23] based approaches are also explored, which
however often require more preprocessing efforts or memory
space. Further, [6] implements the bitmap-based intersection
but requires atomic operations to update the bitmap in parallel
and also suffers from strided memory access pattern.

This work proposes H-INDEX, a hash-indexing based ap-
proach to accelerate parallel triangle counting. Particularly, H-
INDEX comes with the following two contributions.

First, inspired by the observation that only items that go
to the same bucket will have the chance of being identical,
we use hashing to narrow down the search space for inter-
section. Briefly, H-INDEX uses the shorter neighbor list N
to construct a collection of buckets for the longer neighbor
list M to search against. Particularly, H-INDEX first uses
hash to distribute various neighbors of N into a collection
of buckets. Afterwards, H-INDEX hashes each neighbor of the
longer neighbor list - search key - to a corresponding bucket.
Eventually, we will use this search key to search through
that bucket to determine whether there exists an identical
neighbor from N in this bucket. Once an identical neighbor is
found, a triangle is identified. Note, we use N to construct
the collection of buckets, hoping shorter neighbor list will
potentially experience lower collisions.

Second, to coalesce the memory access, we interleave hash
entries from all buckets of the shorter neighbor list. That is,
the first elements from all buckets are stored consecutively,
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Fig. 1: Various triangle counting algorithms for the sorted (a) input lists. Particularly, we assume two threads working on the
intersection with (b) merge-path based approach, (c) binary-search approach, (d) H-INDEX approach with memory friendly
bucket storage format.

subsequently the second elements and etc. We propose this
design because of the fact that during searching for common
neighbors, all threads (of a Warp or CTA in GPU) will start
from the first element in various buckets. In this context,
storing all the elements of the same bucket contiguously will
introduce strided memory access.

It is important to note that H-INDEX is not the first attempt
that uses hashing mechanism for triangle counting - [22],
[25] also explore this direction. However, H-INDEX stands
out in two ways: first, H-INDEX proposes to hash the shorter
neighbor list and use the longer one as the search key to
reduce the potential of collisions. Second, H-INDEX introduces
a memory friendly bucket placement strategy for GPUs. For
comparing the performance, we compute the rate of Traversed
Edges Per Second (TEPS) for each graph.

Highlights. H-INDEX retains a maximum of 141.399 billion
TEPS on the Protein K-mer V2a graph with 64 GPUs. To the
best of our knowledge, H-INDEX is the first work to achieve
beyond 100 billion TEPS computing rate for the triangle
counting problem. It is also important to note that H-INDEX
avoids sorting the neighbor lists during preprocessing, which
is essential and time consuming for both binary-search and
merge-path based approaches.

The rest of this paper is organized as follows. Section II
presents the conventional triangle counting algorithms. Sec-
tion III describe the novel H-INDEX designs. Section IV stud-
ies the performance of H-INDEX across all datasets presented
in graph challenge and Section V concludes.

II. TRIANGLE COUNTING ALGORITHMS

This section discusses the designs of basic triangle counting
algorithms on GPUs.

Merge-path based triangle counting first performs a
binary search on the dotted line in Figure 1(b) (¶) to partition
the intersection task into left and right shadow sides with
roughly similar workloads. The eventual partition will be 1
- 5 of M and N for left side and the rest for right side. Note,
this design also ensures the entries of left side of M will not
interfere with the right side of N , and vice verse. Afterwards,
two threads will work on the left and right shadows in parallel
(·). In Figure 1(b), \ means a common neighbor is found
between M and N .

Binary-search based triangle counting treats the longer
input list M as the binary tree and the shorter list - N - as the
search key list. During intersection, as shown in Figure 1(c),
each search key will descend the binary search tree until either
a matching value is found or the leaf vertex of the tree is
reached. The rule of descending is that we will take a left
branch if the search key is smaller than the current value in
the binary search and right branch otherwise. For instance, for
search key “1”, we will first check whether it equals the root
“5”. Since “1” is smaller than “5”, we will take the left branch.
This process continues until we find a match.

Motivation. H-INDEX is motivated by the fact that both
merge-path and binary-search based methods go through no-
ticeable drawbacks as follows:

Merge-path based approach excels at maintaining the low
time complexity of O(M+N) but suffers from two shortcom-
ings. First, it requires nontrivial effort to correctly partition M
and N into the top left and bottom right sublists as shown
in Figure 1(b). Second, during intersection (·), consecutive
threads (i.e., threads 0 and 1) will have to work on far-apart
data. That is, while thread 0 checks whether M[0] equals
N[0], thread 1 will work on M[5] and N[5]. This leads to
low memory throughput.

Binary-search based approach primarily suffers from two
problems. First, the time complexity is relatively high if M
and N are similarly large. For instance, if M = N = 128,
the total number operations in binary search is 896 (i.e.,
128 × log128). In contrast, merge-path only introduces 256
(i.e., 128 + 128) operations. Second, the access of binary-
search tree will become strided when descending the tree. For
instance, one thread is working on search key 5 while the other
on search key 17.

III. H-INDEX DESIGN

This section discusses the proposed H-INDEX algorithm.
Figure 1(d) explains the H-INDEX standalone approach. Par-

ticularly, we will hash the shorter neighbor list N to construct
five buckets, i.e., b0 - b4. Afterwards, we will iterate through
the larger array M and hash each entry to the corresponding
bucket. Eventually, a linear search is performed to see whether
a similar neighbor from N exists in that bucket. Algorithm 1
shows the procedure for hash-based triangle counting.
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Algorithm 1 Hash-based triangle counting

1: procedure TRIANGLECOUNT(G)
2: for each edge (u,v) do
3: if degree(u)≤ degree(v) then
4: shorterList ← neighborList(u);
5: longerList ← neighborList(v);
6: else
7: shorterList ← neighborList(v);
8: longerList ← neighborList(u);
9: end if

10: ht = HASH (shorterList);
11: for each neighbor ∈ longerList do
12: bucket← HASH (neighbor);
13: count = linearSearch (ht[bucket], neighbor);
14: end for
15: totalTriangle += count;
16: end for
17: return totalTriangle
18: end procedure

Low collision is essential for the success of H-INDEX. This
is also the reason that we often choose the shorter array,
i.e., N to hash and construct the buckets. Once a collision,
unfortunately, happens, that is, one bucket contains more than
one entry, e.g., b1 and b2 in Figure 1(d), we will need to
conduct a linear search to check if a match is found when
hashing M . For instance, when we are working on entry
M [0] = 1, we need to do a linear search to find the common
neighbor ‘1’ from b1. Given we can afford hundreds of hashing
buckets in fast GPU shared memory, we can actually observe
very few collisions. For vertices with long neighbor lists,
collision is inevitable even with larger bucket size. However,
a larger bucket size can help mitigate the impact.

For better memory access pattern, as shown in Figure 1(d),
we will store various buckets from neighbor list N in an
interleaved way. For instance, b0 and b1 of N will be stored in
the one dimensional sequence as b0[0]b1[0]b0[1]b1[1]... instead
storing all entries of b0 together. In this case, we warrant
consecutive threads will access adjacent data - when thread
0 accesses b0[0], thread 1 will be accessing b1[0] which is
adjacent to b0[0].

Scalable H-INDEX. While scaling to multiple GPUs, the
edge list was partitioned based upon the basis of their indices.
H-INDEX simply assigns each GPU equal number of edges.
At the end of the computation, H-INDEX relies on Message
Passing Interface (MPI) to synchronize across all participating
GPUs and arrive at the total number of triangles.

IV. EVALUATION

H-INDEX is implemented with around 500 lines of
C++/CUDA code and compiled with CUDA Toolkit 10.1.105,
g++ 6.4.0 and IBM Spectrum MPI 10.3.0.0 and the optimiza-
tion flag set to -O3. We evaluate H-INDEX on V100 GPUs
from the Summit Supercomputer [18], each node of which
installs dual-socket 22-core POWER 9 processors and 512 GB
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Fig. 2: TEPS for SNAP, MAWI and k-mer datasets.

memory. Particularly, each V100 GPU is equipped with 16GB
device memory. For scalability test, we run H-INDEX with up
to 64 GPUs that are distributed across multiple machines.
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While computing TEPS, we only consider the kernel time
or the time spent on GPU for counting triangles. This excludes
the time for generating the CSR list, edge orientation and
copying the graph to GPU. We mainly evaluate H-INDEX with
the Stanford Network Analysis Project (SNAP) dataset [15],
Protein K-mer dataset, MAWI dataset and Kronecker datasets
mentioned in the Graph Challenge website.

Figure 2 plots the performance of SNAP, MAWI and K-mer
datasets using 1, 16, 32 and 64 GPUs. The graph property of
these datasets are listed in Table I, II and III, respectively.
Impressively, majority of the MAWI and K-mer datasets show
beyond 100 billion TEPS with 64 GPUs. On the contrary, H-
INDEX only achieves 0.31 - 2.02 billion TEPS for a collection
of oregen and p2p graphs with 64 GPUs.
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Datasets Vertices Edges Triangles Rate (billion TEPS)
1GPU 16GPUs 32GPUs 64GPUs

amazon0302 262,111 899,792 717,719 2.194187 10.691221 10.970934 10.339729
amazon0312 400,727 2,349,869 3,686,467 1.921635 16.104681 18.353938 22.000145
amazon0505 410,236 2,439,437 3,951,063 1.923983 16.062387 20.50449 22.003743
amazon0601 403,394 2,443,408 3,986,507 1.899962 15.457611 18.366301 22.824935
as-caida20071105 26,475 53,381 36,365 0.835433 1.008541 1.008541 0.764151
as20000102 6,474 12,572 6,584 0.313874 0.233322 0.187654 0.18183
ca-CondMat 23,133 93,439 173,361 1.047892 1.734122 1.667709 1.37032
ca-GrQc 5,242 14,484 48,260 0.32314 0.289287 0.27365 0.219315
ca-HepPh 12,008 118,489 3,358,499 0.448537 1.332383 1.618824 1.461703
ca-HepTh 9,877 25,973 28,339 0.509059 0.509059 0.499719 0.39328
cit-Patents 3,774,768 16,518,947 7,515,023 1.061635 20.047884 37.71665 59.421514
facebook-combined 4,039 88,234 1,612,010 0.545037 1.075815 1.036639 1.131744
flickrEdges 105,938 2,316,948 107,987,357 0.089606 0.862288 1.763379 2.955591
loc-brightkite-edges 58,228 214,078 494,728 1.372948 3.401167 9.312991 3.013115
oregon1-010331 10,670 22,002 17,144 0.450161 0.447976 0.423317 0.319319
oregon1-010407 10,729 21,999 15,834 0.468378 0.439383 0.423259 0.33923
oregon1-010414 10,790 22,469 18,237 0.457485 0.448771 0.415162 0.329517
oregon1-010421 10,859 22,747 19,108 0.474666 0.445831 0.414817 0.334764
oregon1-010428 10,886 22,493 17,645 0.478896 0.44925 0.432764 0.320893
oregon1-010505 10,943 22,607 17,597 0.481323 0.460294 0.32362 0.342313
oregon1-010512 11,011 22,677 17,598 0.470863 0.452925 0.436304 0.349685
oregon1-010519 11,051 22,724 17,677 0.464933 0.453864 0.42933 0.334426
oregon1-010526 11,174 23,409 19,894 0.467545 0.458806 0.339739 0.349411
oregon2-010331 10,900 31,180 82,856 0.54719 0.599901 0.589092 0.444824
oregon2-010407 10,981 30,855 78,138 0.541486 0.572634 0.582952 0.434279
oregon2-010414 11,019 31,761 88,905 0.545964 0.622501 0.45466 0.474076
oregon2-010421 11,080 31,538 82,129 0.544362 0.595856 0.46414 0.456138
oregon2-010428 11,113 31,434 78,000 0.563435 0.616092 0.47597 0.436569
oregon2-010505 11,157 30,943 72,182 0.561837 0.595341 0.595341 0.455384
oregon2-010512 11,260 31,303 72,866 0.558699 0.613525 0.588764 0.448103
oregon2-010519 11,375 32,287 83,709 0.566617 0.632811 0.607271 0.468586
oregon2-010526 11,461 32,730 89,541 0.562621 0.629723 0.604756 0.473378
p2p-Gnutella04 10,876 39,994 934 0.698946 0.798795 0.752229 0.562909
p2p-Gnutella05 8,846 31,839 1,112 0.601543 0.635916 0.61258 0.466932
p2p-Gnutella06 8,717 31,525 1,142 0.585068 0.585068 0.524704 0.451281
p2p-Gnutella08 6,301 20,777 2,383 0.451529 0.423034 0.399748 0.314603
p2p-Gnutella09 8,114 26,013 2,354 0.540131 0.500488 0.464283 0.366129
p2p-Gnutella24 26,518 65,369 986 0.962026 1.213175 0.962026 0.962026
p2p-Gnutella25 22,687 54,705 806 0.869127 1.01079 0.993287 0.791205
p2p-Gnutella30 36,682 88,328 1,590 1.076961 1.603786 1.576487 1.260117
p2p-Gnutella31 62,586 147,892 2,024 1.308658 2.595414 2.081557 2.027137
roadNet-CA 1,965,206 2,766,607 120,676 2.321262 18.331739 25.844078 24.480993
roadNet-PA 1,088,092 1,541,898 67,150 2.244772 14.533009 15.583588 16.754376
roadNet-TX 1,379,917 1,921,660 82,869 2.329487 16.315843 19.054436 20.000065
soc-Slashdot0902 82,168 504,230 602,592 1.08679 5.422805 6.447847 6.008221

TABLE I: H-INDEX performance for SNAP dataset.

Datasets Vertices Edges Triangles Rate (billion TEPS)
1GPU 16GPUs 32GPUs 64GPUs

201512012345.v18571154-e38040320 18,571,154 38,040,320 2 2.774443 40.169353 70.692366 111.264066
201512020000.v35991342-e74485420 35,991,342 74,485,420 2 2.445993 39.120273 46.726668 125.568529
201512020030.v68863315-e143414960 68,863,315 143,414,960 6 2.197082 36.077847 59.580621 131.567354
201512020130.v128568730-e270234840 128,568,730 270,234,840 10 1.949604 30.230898 57.034523 87.768861

TABLE II: MAWI Dataset performance.

Datasets Vertices Edges Triangles Rate (billion TEPS)
1GPU 16GPUs 32GPUs 64GPUs

P1a 139,353,211 297,829,984 3412 1.340322 25.593425 56.524412 108.890298
U1a 67,716,231 138,778,562 325 1.404229 28.620291 65.402189 137.02436
V1r 214,005,017 465,410,904 49 1.318475 24.011351 51.827288 115.774558
V2a 55,042,369 117,217,600 1443 1.421991 29.918229 67.636023 141.399555

TABLE III: H-INDEX performance for k-mer dataset.
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Datasets Vertices Edges Triangles Rate (billion TEPS)
1GPU 16GPUs 32GPUs 64GPUs

graph500-scale18-ef16 174,147 3,800,348 82,287,285 0.075299 0.96728 2.001232 3.253687
graph500-scale19-ef16 335,318 7,729,675 186,288,972 0.052944 0.705517 1.418535 2.573268
graph500-scale20-ef16 645,820 15,680,861 419,349,784 0.034848 0.450472 0.599995 1.145844
graph500-scale21-ef16 1,243,072 31,731,650 935,100,883 0.024424 0.330214 0.628051 1.21178
graph500-scale22-ef16 2,393,285 64,097,004 2,067,392,370 0.017704 0.242467 0.492248 0.868676
graph500-scale23-ef16 4,606,314 129,250,705 4,549,133,002 0.012377 0.166271 0.343543 0.619135
graph500-scale24-ef16 8,860,450 260,261,843 9,936,161,560 0.008746 0.111646 0.227191 0.439494
graph500-scale25-ef16 17,043,780 523,467,448 21,575,375,802 0.006335 0.082601 0.158073 0.296659

TABLE IV: H-INDEX performance for graph 500 dataset.

Datasets Vertices Edges Triangles Rate (billion TEPS)
1GPU 16GPUs 32GPUs 64GPUs

Theory-16-25-B1k 442 1,682 400 0.051152 0.034946 0.033614 0.025952
Theory-16-25-B2k 442 1,682 1 0.052679 0.034267 0.032986 0.025121
Theory-25-81-256-B1k 547,924 4,264,568 2,102,761 0.42518 1.940011 3.937244 7.166225
Theory-25-81-256-B2k 547,924 4,264,568 7 1.208493 5.265499 10.180364 16.592671
Theory-25-81-B1k 2,132 8,312 2,025 0.230909 0.173469 0.141163 0.159211
Theory-25-81-B2k 2,132 8,312 1 0.22495 0.176097 0.15094 0.118596
Theory-3-4-5-9-16-25-B1k 530,400 22,160,060 35,882,427 0.032511 0.341166 0.568512 1.050831
Theory-3-4-5-9-16-25-B2k 530,400 22,160,060 651 0.13769 1.558791 2.536321 3.468912
Theory-3-4-5-9-B1k 1,200 13,166 9,107 0.298521 0.264241 0.253332 0.190436
Theory-3-4-5-9-B2k 1,200 13,166 35 0.328729 0.262983 0.253332 0.187845
Theory-3-4-5-B1k 120 692 287 0.022359 0.014755 0.010531 0.009625
Theory-3-4-5-B2k 120 692 7 0.021691 0.014755 0.013333 0.010493
Theory-4-5-9-16-25-B1k 132,600 3,165,722 7,096,926 0.201662 1.94578 3.827617 6.692543
Theory-4-5-9-16-25-B2k 132,600 3,165,722 155 0.555961 4.516328 8.577522 11.813171
Theory-4-5-9-16-B1k 5,100 62,072 45,013 0.897769 1.14693 1.033147 0.910325
Theory-4-5-9-16-B2k 5,100 62,072 35 1.033147 1.13197 1.167502 0.888577
Theory-4-5-9-B1k 300 1,880 821 0.056759 0.037569 0.029438 0.027205
Theory-4-5-9-B2k 300 1,880 7 0.05717 0.039251 0.036025 0.026835
Theory-4-5-B1k 30 98 20 0.003099 0.001977 0.00194 0.001452
Theory-4-5-B2k 30 98 1 0.003099 0.00194 0.001432 0.001432
Theory-5-9-16-25-81-B1k 2,174,640 57,334,760 66,758,995 0.018054 0.216295 0.379597 0.662746
Theory-5-9-16-25-81-B2k 2,174,640 57,334,760 155 0.074344 0.714176 1.318801 2.107749
Theory-5-9-16-B1k 1,020 6,896 3,149 0.191577 0.146102 0.137753 0.104434
Theory-5-9-16-B2k 1,020 6,896 7 0.19679 0.146843 0.132698 0.102947
Theory-5-9-B1k 60 208 45 0.006743 0.004542 0.003949 0.003065
Theory-5-9-B2k 60 208 1 0.006542 0.004427 0.00373 0.003165
Theory-81-256-B1k 21,074 83,618 20,736 1.099447 1.49244 1.467462 1.146155
Theory-81-256-B2k 21,074 83,618 1 1.192937 1.572751 1.230609 1.192937
Theory-9-16-25-81-B1k 362,440 5,212,250 4,059,175 0.097144 1.159529 2.39214 3.531217
Theory-9-16-25-81-B2k 362,440 5,212,250 35 0.209749 1.876869 3.963337 4.18007
Theory-9-16-25-B1k 4,420 31,976 15,169 0.626735 0.638673 0.470601 0.484192
Theory-9-16-25-B2k 4,420 31,976 7 0.694929 0.651074 0.60415 0.468955
Theory-9-16-B1k 170 626 144 0.019626 0.013084 0.012063 0.009359
Theory-9-16-B2k 170 626 1 0.019626 0.013626 0.010822 0.009359

TABLE V: H-INDEX performance for Theory dataset.

Table IV and V further list out the performance for the
Synthetic graphs, such as, graph 500 and Theory datasets.
Note, in all the performance related tables, we highlight the
TEPS of relatively better performance.

Figure 3 plots the hash collision count for various selected
datasets like MAWI, SNAP and Theory graphs using two dif-
ferent approaches i.e hashing shorter vs. longer neighbor lists.
As expected, hashing shorter neighbor list always introduces
fewer collisions. Particularly, Theory-16-25-81-B1k dataset
has a minimum hash collision of 2,304,450 and 4,758,124
with hashing shorter and longer neighbor lists, respectively.
Conversely, Theory-4-5-9-16-25-B1k has a maximum hash
collision of 122,394,672 and 289,068,158 with hashing shorter

and longer neighbor lists, respectively.

Performance analysis. We find the performance is related
to the following three factors. First, larger datasets like MAWI,
road net have better performance than smaller datasets, e.g.,
p2p and oregon because they can better saturate the 64 GPUs.
Second, a relatively more balanced distribution of the degree
leads to better workload balance between the thread groups.
Third, as H-INDEX uses vertex ID as a key to hash vertices
into different bins, the ordering of vertex ID also has an impact
on the performance.

Figure 4 and 5 plot a few datasets that present relatively
better and worse scalability, respectively. The key reasons of
such a dramatic difference lie in the vertex and edge count,
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Datasets Vertices Edges Triangles
Rate (billion TEPS)
[11] (2018 Champion) [24] (2018 Champion) H-INDEX

8 x P100 GPU Skylake CPU 1 x V100 GPU
Amazon0302 262,111 899,792 717,719 1.46 - 2.19
Amazon0312 400,727 2,349,869 3,686,467 2.64 0.387 1.922
roadNet-PA 1,088,092 1,541,898 67,150 1.73 - 2.245
roadNet-TX 1,379,917 1,921,660 82,869 2.03 - 2.33
soc-Slashdot0902 82,168 504,230 602,592 0.793 0.15 1.09

TABLE VI: H-INDEX vs. the champions from graph challenge 2018.

1 2 3 4 5 6
Number of GPUs

1

2

3

4

5

6

Sp
ee

du
p

roadNet-CA
roadNet-TX
roadNet-PA
amazon0505
amazon0312

Fig. 4: Graphs with relatively better scalability.

Dataset Vertices Edges Triangles Edge deg. stdev
roadNet-CA 1,965,206 2,766,607 120,676 1.12
roadNet-TX 1,379,917 1,921,660 82,869 1.13
roadNet-PA 1,088,092 1,541,898 67,150 1.14
amazon0505 410,236 2,439,437 3,951,063 3.93
amazon0312 400,727 2,349,869 3,686,467 3.85

TABLE VII: Dataset property for Figure 4.

and the edge degree distribution. Particularly, as shown in
Table VII and VIII, first, graphs with more vertices and edges
can better saturate the GPU computing resources. Second,
graphs with balanced edge degrees lead to balanced workload
distributions.

Table VI compares the performance of our implementation
with the champions in graph challenge 2018. [11] is a GPU
based implementation while [24] is a CPU based one. The
performance of [11] is achieved with 8× P100 GPUs, which
is taken from the paper. And [24] uses a 24-core Intel Xenon
Platinum 8160 processor with 33MB L3 cache. According to
Amazon, one V100, 8× P100 and 24-core Intel Xeon Platinum
8160 processor cost 4,979 USD [2], 32,472 USD [3] and 4,237
USD [1], respectively.

V. CONCLUSION

This paper proposes and implements the H-INDEX based
approach for triangle counting that avoids the preprocessing
step of sorting the neighbor list. For better memory access
pattern, we further introduce interleaved format for the hash
bucket storage. Taken together, H-INDEX achieves beyond 100
billion TEPS computing rate for some graphs.
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Fig. 5: Graphs with relatively worse scalability.

Dataset Vertices Edges Triangles Edge deg. stdev
p2p-Gnutella25 22,687 54,705 806 3.16
as-caida20071105 26,475 53,381 36,365 8.78
p2p-Gnutella30 36,682 88,328 1,590 3.45
facebook combined 4,039 88,234 1,612,010 51.38
ca-HepPh 12,008 118,489 3,358,499 99.92

TABLE VIII: Dataset property for Figure 5.
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[15] LESKOVEC, J., AND SOSIČ, R. Snap: A general-purpose network
analysis and graph-mining library. ACM Transactions on Intelligent
Systems and Technology (TIST) 8, 1 (2016), 1.

[16] LIU, H., AND HUANG, H. H. Enterprise: breadth-first graph traversal on
gpus. In SC’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2015),
IEEE, pp. 1–12.

[17] LOW, T. M., RAO, V. N., LEE, M., POPOVICI, D.-T., FRANCHETTI, F.,
AND MCMILLAN, S. First look: Linear algebra-based triangle counting
without matrix multiplication. 2017 IEEE High Performance Extreme
Computing Conference (HPEC) (2017), 1–6.

[18] OAK RIDGE NATIONAL LAB. SUMMIT Oak Ridge National Labora-
tory’s 200 petaflop supercomputer. Retrived from https://www.olcf.ornl.
gov/olcf-resources/compute-systems/summit/. Accessed: 2019, July 6.

[19] PEARCE, R., AND SANDERS, G. K-truss decomposition for scale-free
graphs at scale in distributed memory. In 2018 IEEE High Performance
extreme Computing Conference (HPEC) (2018), IEEE, pp. 1–6.

[20] SCHANK, T., AND WAGNER, D. Approximating clustering-coefficient
and transitivity. Universität Karlsruhe, Fakultät für Informatik, 2004.

[22] SHUN, J., AND TANGWONGSAN, K. Multicore triangle computations
without tuning. In 2015 IEEE 31st International Conference on Data
Engineering (2015), IEEE, pp. 149–160.

[23] WANG, L., WANG, Y., YANG, C., AND OWENS, J. D. A comparative
study on exact triangle counting algorithms on the gpu. In Proceedings
of the ACM Workshop on High Performance Graph Processing (2016),
ACM, pp. 1–8.

[24] YASAR, A., RAJAMANICKAM, S., WOLF, M. M., BERRY, J. W., AND
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