
Dr. BFS: Data Centric Breadth-First Search on FPGAs
Eric Finnerty Zachary Sherer Hang Liu Yan Luo

University of Massachusetts Lowell

ABSTRACT
The flexible architectures of Field Programmable Gate Arrays (FP-
GAs) lend themselves to an array of data analytical applications,
among which Breadth-First Search (BFS), due to its vital impor-
tance, draws particular attention. Recent attempts that offload BFS
on FPGAs either simply imitate the existing CPU- or Graphics
Processing Units (GPU)- based mechanisms or suffer from scala-
bility issues. To this end, we introduce a novel data centric design
which extensively extracts the potential of FPGAs for BFS with the
following two techniques. First, we advocate to partition and com-
press the BFS algorithmic metadata in order to buffer them in fast
on-chip memory and circumvent the expensive metadata access.
Second, we propose a hierarchical coalescing method to improve
the throughput of graph data access. Taken together, our evaluation
demonstrates that the proposed design achieves, on average, 1.6×
and 2.2× speedups over the state-of-the-art FPGA designs TorusBFS
and Umuroglu, respectively, across a collection of graph datasets.
ACM Reference Format:
Eric Finnerty Zachary Sherer Hang Liu Yan Luo. 2019. Dr. BFS:
Data Centric Breadth-First Search on FPGAs. In The 56th Annual Design
Automation Conference 2019 (DAC ’19), June 2–6, 2019, Las Vegas, NV, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3316781.3317802

1 INTRODUCTION
BFS1 is a building block to analyze graphs which have a wide
range of applications, including Blockchain networks [1], social and
computer networks [2], and chemical compound design graphs [3].
The significance of BFS is further manifested by the fact that Graph
500 [4], a supercomputer ranking organization, exploits BFS [5, 6]
– to rank the world most powerful supercomputers, e.g., Sunway
TaihuLight, MilkWay-2 and K computer.

It is commonly recognized that BFS is a data intensive applica-
tion which spends the majority of the time accessing algorithmic
metadata (i.e., vertex states) and the rest of the time retrieving
graph data (i.e., neighbor list). In particular, BFS conducts the fol-
lowing three tasks i). loading the neighbors of an active vertex, ii).
checking the statuses of each neighbor and iii). marking the unvis-
ited neighbors as current level vertices. Among them, i) is about
graph data access while the rest belongs to metadata. Obviously,
data access is at the core of graph traversal thus motivates this
design of data centric graph traversal on FPGAs.
1This paper uses graph traversal and BFS interchangeably.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317802

FPGAs are becoming an increasingly attractive platform to de-
ploy data analytical applications thanks to the flexible and cus-
tomizable on-chip resources (such as processing logics, on-chip
memory, interconnects, etc.). In this context, one can easily tailor
FPGA fabricate toward specific needs exhibited by various work-
loads and extract parallelism from algorithms that would otherwise
impossible on CPUs and GPUs. It is important to mention that
the low power consumption of FPGAs is also tempting for various
applications.

Attracted by these advantageous features, an array of endeavors
has surged to offload BFS on FPGAs, which, however, falls short in
twoways. On one hand, the work in [7, 8] simply extends CPU/GPU
designs on FPGAs without exploiting the potential of FPGAs, such
as hardware reconfigurability). On the other hand, we also observe
efforts [9, 10] which are more tailored to the strengths of the FPGA
platform, but fall short at metadata access and accommodating large
graphs.

To this end, we introduce a novel data centric design which
extensively extracts the potential of FPGA for BFS. In particular,
this design virtually eliminates the expensive metadata access from
external memory, as well as largely enhances the graph data re-
trieval. Taken together, our design is 1.6× and 2.2× faster than the
state-of-the-art projects, such as, TorusBFS [9] and Umuroglu et
al. [10]. In particular, this project comes with the following two
contributions.

First, we advocate to partition and compress the BFS algorith-
mic metadata in order to buffer them in fast on-chip memory and
circumvent the expensive metadata access. In particular, our initial
intent is to load the entire metadata into on-chip memory before
the computation so that the random metadata access is cached on-
chip. However, this design is limited by the size of on-chip memory.
To combat this scalability issue, we exploit the “unpopular” 1-D
vertical partition to divide the graph by destination vertices so that
each partition only accesses a specific (i.e. smaller) subrange of
the metadata. Further, we compress the metadata into a bitwise
status array in order to fit more metadata on-chip thanks to the
bit-addressable nature of FPGA memories.

Second, we propose a hierarchical coalescing method to improve
the throughput of graph data access. Particularly, we decouple the
processors for moving data from external memory in core (i.e., data
access processor) and the follow-up on-chip status checks/updates
(i.e., computing processor). That is, we confine the amount of data
access processors to equate the number of the memory channels
in order to avoid contentions while maximize the amount of par-
allelism to in turn maximize the computing speed. In short, this
design coalesces the memory accesses to be accessed from a single,
parallel accessor module. Second, we coalesce the memory access
from different requests into a single transaction. Third, we always
load the memory bus amount of graph data on-chip to simplify the
memory transaction issuance thus improve the throughput.



(c) CSR format

1

5

20

43

(a) Sample graph and a valid BFS

1 3 0 2 4 1 4 5 0 4 1 2 3 2

0 2 5 8 10 13 14Begin position

Adjacency list

0 1 2 3 4 5Vertex ID
1 1

1 1 1

1 1 1

1 1

1 1 1

1

Source 
vertex

Destination vertex

1 1

1 1 1

1 1

1 1

1 1 1

1

Source 
vertex

Destination vertex

(b) Matrix format (d) Vertical partition

0

1 3

42

5

Figure 1: A (a) Sample graph, and its (b) Matrix format, as well as (c) CSR format. And (d) Vertical partition is adopted by this work for better
cache designs.

While all these data centric designs are probably achievable
atop general purpose CPU and GPUs, we find this effort would
involve overwhelming amount of software control-flows (i.e., over-
head) [11? ]. In contrast, our work simply fabricates all these de-
signs in hardware circuits on FPGAs thus enjoys exceptional per-
formance.

The rest of paper is organized as follows. Section 2 describes
background and related work. Section 3 presents the design princi-
ples of this work. Section 4 discusses the techniques proposed in
this paper. The experiments and results are presented in Section 5.
Section 6 concludes.

2 BACKGROUND AND RELATEDWORK
This section presents the essential background knowledge for this
work, namely BFS and graph partitioning.

2.1 Graph and Graph Representation
An unweighted graph can be represented as G = (V ,E), where
V and E are the vertex and edge sets of the graph, respectively.
Since mainstream FPGAs address memory components in a linear
fashion, one can hardly store a graph in the geographical manner
(as shown in Figure 1(a)). Instead, a sparse matrix storage format
such as compressed sparse row (CSR), compressed sparse column
(CSC), edge list and etc, is chosen.

Figure 1(b) plots the matrix format representation of the sample
graph from Figure 1(a). In particular, the matrix format assumes
each row and column represents a specific source and destination
vertex, respectively. Each ‘1’ stands for an edge in sample graph.
For example, the ‘1’ at 0-th row and 1-st column stands for edge (0,
1). Since Figure 1(a) is an undirected graph, one should also notice
the presence of edge (1, 0) in Figure 1(b).

Figure 1(c) presents the CSR format representation which is also
adopted by mainstream accelerator-based BFS attempts, such as
Gunrock [12], Enterprise [6] and TorusBFS [9], for better locality
and space consumption. The CSR format stores all the destination
vertex IDs of each edge in the adjacency list array and uses a begin
position array to denote the beginning index of the destination ver-
tices for each source vertex. Therefore, the adjacency list and begin
position arrays consume the space of |E | and |V | + 1, respectively.

2.2 Breadth-First Search (BFS)
BFS starts from a root vertex and subsequently traverses through a
graph level by level. Note, the next level traversal only starts once

current level work is finished, which is sketched (dotted, blue line)
in Figure 1(a). The level information of each vertex is stored in a
metadata structure – status array – which has size |V |.

At each iteration, BFS conducts two tasks – expansion and in-
spection – concerning both source and destination vertices. In par-
ticular, expansion loads the adjacency lists (i.e., destination vertex)
of vertices from prior iteration. Inspection will check the status of
adjacent vertices (i.e., destination vertex) and mark those unvisited
ones as current level vertices.

As the traversal proceeds, the updated destination vertices from
the current inspection will become the source vertices for the ex-
pansion of the next iteration. In our design, we choose to use a
CSR-formatted graph, with the vertex status array serving as meta-
data for the traversal.

2.3 Field Programmable Gate Arrays (FPGAs)
An FPGA is a reconfigurable computing platform that allows de-
signers to implement custom hardware architectures without the
overhead in time and production cost associated with Application-
Specific Integrated Circuit (ASIC) production. Many resources are
included on chip to aid in the production of these designs like
adaptive logic modules (ALMs), memory blocks (BRAM), embed-
ded multipliers for digital signal processing, and other peripheral
interfaces like external memory (DDR, HMC, etc.) and Peripheral
Component Interconnect - express (PCIe) interfaces.

Today, many FPGA platforms are geared towards the production
of hardware accelerators. The flexible routing architecture and
parallel resources allow for many types of designs that would be
impossible in hardened silicon or in software, the main advantage
being deep pipelining and the simultaneous operation of replicated
custom structures. Coupled with high level tools for moving data
over network interfaces or PCIe, data can be moved quickly on or
off the device en masse.

Some FPGAs are also packaged as a System on Chip (SoC) with a
CPU on die, usually ARM-based. Intel’s Cyclone, Arria, and Stratix
platforms all have ARM SoC options, with the idea that they could
be implemented in a standalone system with custom hardware. The
FPGA and ARM CPU are coupled by an AXI bridge that allows for
communication between the hardware and software, allowing for
hardware-software codesign that would be impossible even on an
FPGA mounted on PCIe.



2.4 Related Work
Recent years have witnessed BFS acceleration on a variety of pro-
cessors, such as, multi-core CPU [13? ] GPUs [5, 6, 12], Xeon
Phi [14, 15], and FPGA [7–10, 16]. In this section, we compare
our work against the most relevant FPGA platforms.

There exist FPGA-based implementations of both hybrid vertex-
[17] and edge- [18] centric paradigms in pursuit of better perfor-
mance: vertex centric designs do well when there are few updates
per iteration, and edge centric designs do well in the opposite
case. Successful designs have been proposed with both, including
GraphGen [? ] for vertex-centric processing and [8] for edge-centric
processing. Hybrid designs have also been proposed that attempt
to switch between the two paradigms such that the strengths of
each paradigm can be used on the iterations where they are needed
[7]. We use a vertex-centric design because it fits best with the
partitioning scheme we are using.

To alleviate vertex status access pressure, TorusBFS [9] caches the
entire status array in on chip memory. Since various PEs possesses
different on-chip memory, a toroidal message-passing network is
exploited to maintain coherence. Clearly, the torus connection can
rapidly drain up the FPGA resources and this design cannot scale
to large number of PEs thus experiencing low performance. We
notice that Zhou et al. [19]’s multi-ported block RAMs can, in a
small scale, address this issue. However, with multi-ported block
RAMs comes the need to control simultaneous writes and reads,
which can increase design complexity and consume valuable device
resources.

Many designs use multiple processing elements when access-
ing external memory, but these designs have high memory band-
width [20] or use exotic memory technologies like hybrid memory
cube or HBM [21, 22]. Not all accelerators have access to these tech-
nologies; in fact most FPGA acceleration boards today use DDR4
DRAM as their external memory, some with only a single interface
to access it. These boards are therefore bound by the shortcomings
of this memory technology, namely poor random access perfor-
mance and low maximum bandwidth, with the advantage being
low cost per unit capacity. Our proposed design is optimized for
use with DRAM, and seeks to address its shortcomings with an
architecture designed around tightly controlled memory accesses
to a single memory interface, and extracts parallelism from the
width of the bus, not the bandwidth.

3 DESIGN PRINCIPLES
This section briefly presents the twin design principles for the
proposed data-centric graph traversal on FPGAs. And the end of
each subsection, we also point out the unique advantages of FPGAs
that favor our designs.

#1. Buffering the partitioned and compressed
metadata in on-chip memory.
We advocate to buffer metadata in fast on-chip memory stemming
from the fact that BFS spends majority of the runtime checking and
updating the metadata, as made evident by mainstream projects [5,
6, 23]. This phenomenon originates from the following two facts:
first, accessing the graph data (i.e., neighbor lists) of each frontier
is more or less sequential [6]. Second, metadata access is decided

by the vertex IDs of neighbor lists where geographically close
vertices are often assigned with random vertex IDs. Note, it is
computationally intractable to assign continuous IDs to all nearby
vertices [24].

Despite the fact that buffering all metadata in on-chip memory
can potentially expedite the graph traversal, it also limits the size
of a solvable graph to the budget of the on-chip memory (i.e., ∼10s
of MBits). This evolves into a noticeable problem since the majority
of nontrivial real-world graphs contain an amount of metadata that
greatly exceeds the storage capacity of on-chip memories[23].

In this work, we implement a graph partitioning method to
address this problem. As shown in Figure 1(d), if we vertically
partition the graph and solve each partition at a time, the accelerator
will only access and update the metadata of destination vertices
in a particular range. In this context, one only needs to buffer that
specific subrange of metadata in limited on-chip memory.

While both designs can be implemented on general purpose
GPUs (given its manually controllable shared memory), FPGAs
stand outwith two advantages. First, FPGAs provision bit-addressable
on-chip memory which allows us to buffer 8× more metadata. It
is important to mention that FPGAs support bitwise atomic opera-
tions in on-chip memory which are absent from GPUs. Second, the
Arria 10 FPGA features 44 Mbits on-chip memory, which is several
times larger than state-of-the-art GPUs [25].

#2. Hierarchically coalescing graph data access.
Once metadata is buffered on-chip, graph data becomes the next
bottleneck. Since real-world graphs can arrive at magnitude of GBs,
we have to store the graph data in external memory and stream
in for computation. Consequently, our second design contribution
hierarchically combines graph data accesses in order to avoid con-
gestions and maximize throughput.

First, at the higher level, we decouple the data access proces-
sor (definition in Section 1) and computing processor in order to
maximize data throughput and processing power, respectively. In
particular, we first restrict the amount of graph data loaders to
be the same as the number of memory channels in order to avoid
I/O contentions. Second, since more vertex processors will yield
larger computing power thus faster processing speed, we fabricate
much higher amount of processors for follow-up computing, i.e.,
checking and updating neighbor status. Simply put, we coalesce
the memory access from multiple computing processors to avoid
contentions at memory channel.

Second, toward data access processor design, we combine multi-
ple data requests to minimize the amount of transactions, as well
as always loading full memory bus bandwidth amount of data (i.e.,
512 bits) in order to simplify the transaction issuance. Note, both
designs can maximize the throughput of transactions. Because the
first design is straightforward, we will explain the second one with
a counter example as below. Reading a single integer value will still
require reading a whole line of memory bus, and computing the
offsets of a memory block that is smaller than bus bandwidth will
delay the issuance of the request. Taken together, we propose to
directly load that full bus bandwidth amount of data.

It is important to mention that all these designs, i.e., decoupling
data and computing processors, coalescing and simplifying data



access transactions are naturally fabricated on FPGAs which will,
otherwise, require sophisticated control-flows (i.e. overhead) to
implement on general purpose accelerators [11].

4 HARDWARE IMPLEMENTATION

Edge list accessor

St
at

u
s 

u
p

d
at

e 
B

in
 0

St
at

u
s 

u
p

d
at

e
 

B
in

 1

St
at

u
s 

u
p

d
at

e
 

B
in

 1
5

Status recombiner

…

External 
memory

System / memory 
controller

Frontier 
generator

Status cache

Begin position 
buffer

Request 
generator

M
e

ta
d

at
a 

ac
ce

ss

Graph data access

Figure 2: An overview of the accelerator design, where the green and
yellow boxes are on-chip and external memory, respectively. The
yellow and blue lines are external memory data and on-chip data
flows, respectively.

This section presents the implementation of the data and meta-
data access optimized accelerator. Figure 2 briefly depicts a high
level diagram of the hardware implementation. It is designed to
separate the metadata access from the data access, improving the
processing speed as well as the utilization of the memory. Below,
we will discuss these designs in detail.

4.1 Metadata Access Design
The metadata processing section of the design focuses on creating
an optimized memory access pattern for metadata retrieval, as well
as accommodate the graphs with nontrivial amount of vertices.

Partitioning is a preprocessing step in which the graph is ver-
tically partitioned such that the edges with destination vertices in
the range pn to p(n+1) are in partition n. Departing from the main-
stream 1-D horizontal partitioning method used by [5, 6], which
partitions the graph by source vertices, this work chooses the 1-D
vertical partition hinging upon the “pushing” nature of typical BFS.
That is, BFS always pushes updates from source to destination. In
this case, the status check and potential status updates from each
partition will always be restricted to a limited range.

In detail, this partition is achieved within three steps. Firstly,
we will scan through the graph and classify various edges into
different partitions based upon destination vertices. Assuming we
have p partitions, the destination vertex range for partition i is
[
|V | ·i
p ,

|V | ·(i+1)
p ]. For instance, if we have p = 2 partitions, partition

0 and 1 are account for the edges whose destination vertices falling
in range of [0, |V |

2 ] and [
|V |
2 , |V |], respectively. Second, the corre-

sponding metadata of each partition is also identical. Third step
converts this edge list format into CSR format.

Frontier Generator

Current status array

Previous status array

XOR

Frontier queue

Writeback to 
status cache

Figure 3: A detailed representation of the frontier finder module.

Once preprocessing is accomplished, we will load the metadata
on-chip twice in each iteration. The first loading is for the frontier
generator which highlights the frontier vertices in the current
partition. Frontier highlighting is done by checking vertex status
and finding those vertices that were visited at the previous level.
To streamline this process, we represent the visited status of each
vertex as a single bit, resulting in a 32x compression of status versus
storing them as integers. The benefit of this is twofold: it allows
for a reduced footprint for metadata in memory, and it allows for
faster frontier highlighting by computing the bitwise XOR of the
status of the current level with that of the previous level, leaving
only those vertices that were only visited on the last level. The
frontier generator writes these frontiers back in to the status cache
so that at the end of this process the status cache will contain
all of the frontiers for the partition on chip. The reading, frontier
highlighting, and writeback steps are all pipelined in the frontier
generator for optimal performance.

The second loading is for the edge list accessor to check and
update the states of neighboring vertices in a pipelined fashion. As
we will discuss shortly, edges are packed and loaded and extracted
from 512 bits of data. In order to process them, 16 separate block
rams are used to hold the status updates corresponding to relative
offsets within a memory line (e.g. the first location in a memory line
will always update only the first block RAM, the second will always
update the second block RAM, etc). At the end of the partition
traversal, the status updates in that partition will be striped across
all of these block RAMs. Receiving a line of memory and updating
the bins is a pipelined process, and the pipelined edge list accessor
can update all bins in a single cycle, resulting in a maximum of 16
status updates per cycle.

Once a partition is solved, the copy step can begin. The status
combiner is a separate module that bridges the gap between the
updated status and current status. During the copy phase, the status
combiner performs a simultaneous read from all of the update bins
and combines the resulting data using a bitwise OR operation. This
creates a single memory line that holds all of the updates that
were previously striped across the update bins. The resulting line is
then written back to the external memory. Once all of the updated
status has been committed to the memory, the next partition can
be fetched to the chip and processed. Once all partitions have been
processed, and no frontiers were found, the traversal is complete.
Otherwise, the accelerator will start the next level traversal.

4.2 Data Access Design
Graph data access is simply related to the processing of CSR data
(i.e., begin position and edge list), which consists of two steps –
begin position generation and edge list loading/filtering.

The request generator takes the frontiers created by the fron-
tier generator and creates memory requests for the neighbors of



 0

 100

 200

 300

 400

 500

R
M
AT

 

21
-1
6

R
M
AT

 

21
-3
2

R
M
AT

 

21
-6
4

R
M
AT

 

22
-1
6

R
M
AT

 

22
-3
2

T
h
ro
u
g
h
p
u
t 
(M
T
E
P
S
)

Xeon E5-2643
TorusBFS
Umuroglu
Our solution

Figure 4: Comparing our design against state-of-the-art projects, i.e.,
TorusBFS [9] and Umuroglu [10].

Resource Absolute Utilization % of Available
Logic (ALMs) 68,224/251,680 ALMs 27%
Block RAMs 19,258,360/43,642,880 Mb 44%

PLLs 54/96 56%

Table 1: The device utilization of our design on our target platform.

those vertices to be issued during the data access step. The request
generator fetches begin position data from memory and matches
it with frontiers generated in the metadata access step. The be-
gin position data is read in sequential mode for optimal memory
bandwidth utilization. In this step, it is beneficial to coalesce adja-
cent memory requests into single transactions to reduce the total
transaction count. Consider vertices 1 and 2 in figure 1(c). If these
vertices are both valid on an iteration, then two requests would be
formed containing {0, 2, 4} and {1, 4, 5}. Since these are sequential
in memory, it would be optimal to combine them into one request
containing {0, 2, 4, 1, 4, 5}. The request generator does this using
a pipelined combination network to minimize the number of total
memory accesses and to promote burst operation. It also allows the
request generator to produce a new request on each cycle.

To increase memory performance, the request generator also
includes a memory buffer to allow for the pre-fetching of begin
position data. The memory buffer fetches memory lines from the
external memory and enqueues them on a begin position queue.
Once the queue is nearly empty, the memory buffer process wakes
up and refills itself. Memory buffer reads are done in sequential
burst mode, increasing memory bandwidth utilization.

Valid edge extraction. When utilizing full memory lines to
access edges, it is likely that a line may contain invalid edge data.
For the accelerator to be aware of which edges in a line are valid,
it generates bitmaps that correspond to the first and last lines of a
memory request. The bitmaps are 16 bits wide, corresponding to
the number of edges we contain in a memory line. A 1-bit in the
bitmap denotes a valid edge for that request in that line. Bitmaps
are not required for lines between the first and last in a request
because all of the edges in these lines are known to be valid due to
the CSR graph representation. These bitmaps are pushed onto the
request queue with the memory requests that they correspond to,
and are generated as part of the memory request pipeline.

5 EVALUATION AND RESULTS
We implemented this system in 7,034 lines of Verilog code targeting
the Arria 10 SoC development kit, clocked at 220MHz for the 1Mb
cache design and 200MHz for the 2Mb design. Table 1 shows the
design’s utilization on this platform. We have chosen RMAT graphs

 0

 1

 2

 3

 4

 5

 6

R
M
AT

 

21
-1
6

R
M
AT

 

21
-3
2

R
M
AT

 

21
-6
4

R
M
AT

 

22
-1
6

R
M
AT

 

22
-3
2

S
p
e
e
d
u
p

Speedup

Figure 5: Speedup of using a bigger cache.

for our testing because of their use in evaluation of other works [10,
20]. We use graphs of scale 21, and 22 with average degrees of 16,
32, and 64 for each. The scale 22 with degree 64 could not be tested
on our platform due to external memory size limitations, but unlike
the internal memory restrictions of [9] external memory can be
more easily expanded, allowing for scaling beyond scale 22. Graphs
were generated using the Graph500 graph generator at MGHPCC
using the default parameters (A=0.57, B=0.19, C=0.19).

5.1 Comparison with state-of-the-art
Figure 4 demonstrates the effectiveness of the proposed design over
Umuroglu [10] and TorusBFS [9], and an Intel Xeon E5-2643 CPU.
We show a 4.1× speedup on average over the Xeon CPU, obtained
as a geometric mean of the speedups on each graph. Over state of
the art FPGA designs, we achieve up to a 1.6× improvement over
TorusBFS [9] and up to a 2.1× improvement over Umoroglu [10]. It is
also obvious that because of keeping scalability in mind, our system
can dramatically outperform the other projects when the size of
the graph soars in Figure 4. The design in [10] reports a figure
for MTEPs/GB/s to measure the usage of the memory interface.
Our design does not outperform [10] in this regard, because we
do not choose to switch to an edge-centric paradigm at the dense
levels. While it decreases the amount of burst mode accesses to the
memory, thus reducing overall bandwidth utilization, our solution
eliminates redundant work, therefore improving the throughput.
The design in [10] also suffers from scalability issues due to the fact
that it stores the status array in on-chip memory.

In addition to the performance gain, we found that we also
surpass the Xeon-powered server in total system efficiency. We
measured the power consumption each full system from mains
power at the power supplies. On the FPGA platform we were able
to achieve 15.3 MTEPS/watt peak efficiency, while on the server we
could only achieve 1.5 MTEPS/watt, resulting in an 10x increase
in efficiency for our platform. For our platform, we show a power
consumption of 16 W with a 2 Mb vertex cache, and 14.5 W with
a 1 Mb vertex cache. Through this, we also observe that using a
smaller vertex cache can result in lower power consumption due to
the reduced memory cost.

Resource utilization. Table 1 investigates the resource utiliza-
tions of our design. We use a large percentage of the available block
RAM on chip (44%), mostly taken up by our status cache.

5.2 Performance impacts of optimizations
Figure 7 demonstrates the memory reduction yielded by coalesced
memory access by comparing against our design with memory



 0

 1

 2

 3

 4

linux Epinions Com-dblp amazon

S
p
e
e
d
u
p

speedup

Figure 6: Speedup of decoupling data access and computing.

 0

 1

 2

 3

 4

R
M
AT

 

21
-1
6

R
M
AT

 

21
-3
2

R
M
AT

 

21
-6
4

R
M
AT

 

22
-1
6

R
M
AT

 

22
-3
2

M
e
m
o
ry

 
tr
a
n
s
a
c
tio
n

 
re
d
u
c
tio
n

 
(X
)

Transaction reduction

Figure 7: Reduction in memory transaction from coalesced graph
data access.

coalescing disabled. Coalescing memory accesses results in up to
a 3.4× reduction in total memory requests, 2.3× at minimum, and
2.9× on average. Fewer memory transactions means that the load
on the memory interface is reduced, and that more transactions
can occur in the sequential burst mode. This means that coalescing
the requests for neighbors of adjacent frontiers can yield better
performance in the metadata update step.

Figure 5 studies the benefits of using a bigger on-chip memory
over a smaller one, resembling the benefits of bit over byte address-
able mechanism. We synthesized our design with a vertex cache of
two sizes, 1Mb and 2Mb, and observed that the 2Mb cache always
yielded higher performance. We see a 4.1× speedup on average
using the larger 2Mb cache, with 5.6× maximum and 2.6× mini-
mum. We find that expanding the size of our cache yields better
performance in all graphs, because the ability to hold more of the
graph on chip at a given time means that we avoid having to use
high-latency external memory to fetch other partitions.

Figure 6 depicts the speedup of the designwith separatemetadata
and data with a design that does not separate data and metadata.
To test this, we use one of our own designs that can only support
smaller graphs, so we use a suite of smaller graphs to compare. Our
current design achieves up to a 3.5× speedup, 1.2× at minimum,
and 2.0× on average. This is largely due to the lower number of
memory accesses in our current design. Note, these datasets are
downloaded from https://snap.stanford.edu/data/.

6 CONCLUSION
In this paper, we have proposed a novel data-centric hardware
accelerator for BFS that uses an off-chip status array and tight
external memory access control to reduce contention in its status
updates. Compared with CPU designs and state-of-the-art FPGA
designs, we show that our hardware-software codesigned model
can achieve 4.1× speedup over a CPU design, up to 2.1× over [10]
and up to 1.6× over [9].

ACKNOWLEDGMENT
We thank the anonymous reviewers for their comments. This work
is supported in part by the US National Science Foundation No.
1547428, No. 1541434, No. 1738965, No. 1450996 and CRII Award
No. 1850274.

REFERENCES
[1] Anil Gaihre, et al. Do bitcoin users really care about anonymity? an analysis of

the bitcoin transaction graph. In 2018 IEEE International Conference on Big Data
(Big Data), pages 1198–1207. IEEE, 2018.

[2] Brahim Betkaoui, et al. A framework for FPGA acceleration of large graph
problems: Graphlet counting case study. In 2011 International Conference on
Field-Programmable Technology, pages 1–8. IEEE.

[3] Nenad Trinajstic. Chemical graph theory. Routledge, 2018.
[4] Richard C Murphy, et al. Introducing the graph 500. Cray User’s Group (CUG),

19:45–74, 2010.
[5] Duane Merrill, et al. Scalable gpu graph traversal. In ACM SIGPLAN Notices,

volume 47, pages 117–128. ACM, 2012.
[6] H. Liu et al. Enterprise: breadth-first graph traversal on GPUs. In SC ’15: Proceed-

ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12.

[7] Shijie Zhou et al. Accelerating graph analytics on CPU-FPGA heterogeneous
platform. In 2017 29th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), pages 137–144. IEEE.

[8] Shijie Zhou, et al. An FPGA framework for edge-centric graph processing. In
Proceedings of the 15th ACM International Conference on Computing Frontiers - CF
’18, pages 69–77. ACM Press.

[9] Guoqing LEI, et al. TorusBFS: A novel message-passing parallel breadth-first
search architecture on FPGAs. IRACST International Journal, 5(5):6.

[10] Y. Umuroglu, et al. Hybrid breadth-first search on a single-chip FPGA-CPU het-
erogeneous platform. In 2015 25th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–8.

[11] Michael Bauer, et al. Cudadma: optimizing gpu memory bandwidth via warp
specialization. In SC, 2011.

[12] Yangzihao Wang, et al. Gunrock: Gpu graph analytics. ACM Transactions on
Parallel Computing (TOPC), 4(1):3, 2017.

[13] Reynold S Xin, et al. Graphx: A resilient distributed graph system on spark. In
First International Workshop on Graph Data Management Experiences and Systems,
page 2. ACM, 2013.

[14] Alexander Frolov, et al. Performance evaluation of breadth-first search on intel
xeon phi. page 12.

[15] Mireya Paredes, et al. Breadth first search vectorization on the intel xeon phi. In
Proceedings of the ACM International Conference on Computing Frontiers, pages
1–10. ACM, 2016.

[16] Shijie Zhou, et al. High-throughput and energy-efficient graph processing on
FPGA. In 2016 IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 103–110. IEEE.

[17] Grzegorz Malewicz, et al. Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
data, pages 135–146. ACM, 2010.

[18] Amitabha Roy, et al. X-stream: Edge-centric graph processing using streaming
partitions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 472–488. ACM, 2013.

[19] Charles Eric LaForest et al. Efficient multi-ported memories for FPGAs. In
Proceedings of the 18th annual ACM/SIGDA international symposium on Field
programmable gate arrays - FPGA ’10, page 41. ACM Press.

[20] O. G. Attia, et al. CyGraph: A reconfigurable architecture for parallel breadth-
first search. In 2014 IEEE International Parallel Distributed Processing Symposium
Workshops, pages 228–235.

[21] Jialiang Zhang, et al. Boosting the performance of FPGA-based graph processor
using hybrid memory cube: A case for breadth first search.

[22] Maohua Zhu, et al. Performance evaluation and optimization of hbm-enabled gpu
for data-intensive applications. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 26(5):831–840, 2018.

[23] Hang Liu et al. Graphene: fine-grained io management for graph computing. In
Proceedings of the 15th Usenix Conference on File and Storage Technologies, pages
285–299. USENIX Association, 2017.

[24] Hao Wei, et al. Speedup graph processing by graph ordering. In Proceedings
of the 2016 International Conference on Management of Data, pages 1813–1828.
ACM, 2016.

[25] NVIDIA TESLA P100 GPU, https://images.nvidia.com/content/tesla/pdf/nvidia-
tesla-p100-pcie-datasheet.pdf.



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 12.60 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20190429080835
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     12.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Down
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



