
Efficient Encoding and Reconstruction of HPC
Datasets for Checkpoint/Restart

Jialing Zhang Xiaoyan Zhuo Aekyeung Moon Hang Liu Seung Woo Son
Department of Electrical and Computer Engineering

University of Massachusetts Lowell
Lowell, MA, USA

Abstract—As the amount of data produced by HPC applica-
tions reaches the exabyte range, compression techniques are often
adopted to reduce the checkpoint time and volume. Since lossless
techniques are limited in their ability to achieve appreciable data
reduction, lossy compression becomes a preferable option. In this
work, a lossy compression technique with highly efficient encod-
ing, purpose-built error control, and high compression ratios is
proposed. Specifically, we apply a discrete cosine transform with
a novel block decomposition strategy directly to double-precision
floating point datasets instead of prevailing prediction-based
techniques. Further, we design an adaptive quantization with
two specific task-oriented quantizers: guaranteed error bounds
and higher compression ratios. Using real-world HPC datasets,
our approach achieves 3x–38x compression ratios while guaran-
teeing specified error bounds, showing comparable performance
with state-of-the-art lossy compression methods, SZ and ZFP.
Moreover, our method provides viable reconstructed data for
various checkpoint/restart scenarios in the FLASH application,
thus is considered to be a promising approach for lossy data
compression in HPC I/O software stacks.

Index Terms—Lossy Compression, Checkpoint/Restart, DCT

I. INTRODUCTION

HPC applications periodically produce extremely large

amounts of data, mainly for snapshotting their states for

possible failure/restart and post-simulation data analysis [1],

[2]. Storing these raw data generated on supercomputers incurs

an excessive overhead of storage space and I/O time. For

example, a total of 170 terabytes of CESM (Community Earth

System Model) data is being produced for CMIP5 (Coupled

Model Intercomparison Project), and multiple petabytes of

data will be generated for the upcoming CMIP6 experi-

ments [3], [4] per entire run. At the same time, however, a

supercomputer like Yellowstone [5] has only tens of petabytes

of centralized file system and data storage, with less than 100

GB/s of aggregated I/O bandwidth.

Compression techniques can help mitigate the burden during

the data I/O phase by reducing checkpoint data size, thereby

shortening the checkpoint (I/O) time [6]–[9]. Traditional loss-

less compression techniques, while preserving 100% of data

fidelity, are not able to achieve appreciable data reduction on

floating-point scientific data [10]–[15]. For example, the loss-

less compressors used in MCRENGINE [14], ISOBAR [15],

and Welton et al. [13] achieved only about 1.15x–1.6x com-

pression ratios which do not meet the demanding datasize

This material is based upon work supported by the National Science
Foundation under Grant No. 1751143.

reduction requirement. Lossy compression, which has been

widely used in image, video, and audio compression, can

realize higher compression ratios than lossless ones. To date,

lossy compression has not been widely adopted in the scientific

domain for several reasons: scientific domain knowledge is

required for the design of efficient lossy compressors, high

compression precision on scientific data is demanded, and

the viability of reconstructed data from lossy compressors

in scientific workflows such as checkpoint/restart is not well

quantified.

On the other hand, lossy compression, which has been

widely used in image, video and audio compressions, can bring

a higher compression ratio than lossless one. Though it will

introduce errors which are not easy to bound, recent studies

have found that scientific data can actually tolerate some error-

bounded loss in their simulation data accuracy [6]. Moreover,

errors, to some extent, are inherent in scientific simulations

where they can be generated from inaccurate scientific sen-

sors [16]–[19]. Thus, applying lossy compression can mitigate

the overall overhead faced by today’s HPC systems.

Existing lossy compression techniques used for scientific

data often apply strategies such as prediction, binary represen-

tation, data transform, and vector quantization. Di and Cap-

pello [20] proposed a technique called SZ, where predictable

data were represented based on several curve-fitting models

and unpredictable datasets were compressed using a binary

representation analysis. Tao et al. [20], [21] extended SZ by

employing an adaptive quantization mechanism to improve

the accuracy of their prediction-based compression algorithm.

The limitation of the prediction-based compressors is that they

were data dependent. The compression performance would de-

grade if the simulation data exhibited less structure [22], [23].

Lakshminarasimhan et al. [24] proposed a technique called

ISABELA, where the B-Spline transformation was applied on

sorted data. However, the compression ratio of ISABELA was

limited due to the sorting process. NUMARCK [25] adopted

quantization mechanisms on the change ratios between consec-

utive checkpoints, but it could not ensure compression error

within the bounds. Yuan et al. [26] presented a parallelized

version of [25], but it had a drawback of its large memory

requirement.

The above-mentioned challenges motivate us to design

a lossy compressor that is efficient, error bounded, able

to achieve high compression ratios, and viable for check-

79

2019 35th Symposium on Mass Storage Systems and Technologies (MSST)

2160-1968/19/$31.00 ©2019 IEEE
DOI 10.1109/MSST.2019.00-14

point/restart. In this work, we propose a novel block decom-

position strategy and combine it with the well-known discrete

cosine transform (DCT) on double-precision floating point

datasets directly. The reason for choosing DCT is because

it has high decorrelation efficiency [9], [27], and its inverse

has the same spectrum as the original data [28]. The major

contributions of our approach presented in this paper are

described as follows:

1) With the proposed novel block decomposition strat-

egy directly applied to floating-point numbers, the modified

transform-based technique not only efficiently decorrelates

data content but also eliminates potential computational over-

heads, such as sorting or ordering coefficients, while achieving

high compression ratios. Combining DCT with customized

decomposition, which improves the ability of DCT to distin-

guish dominant coefficients, and quantization, we were able to

achieve comparable compression ratios with high efficiency.

2) An adaptive quantization customized with our decom-

posed DCT coefficients is designed, in which users can select

the compressor modes based on their task requirements: either

guaranteed maximum relative errors within specified bounds

(by an error-controlled Quantizer-EC) or high compression

ratios within acceptable error rates (by a quantization table

based Quantizer-QT). Strict error control in original (spatial)

domain is achieved in transform-based lossy compressors.

The quantizer is determined for each checkpoint by learning

the distribution of high-frequency DCT coefficients. We also

create a customized encoding model that exploits increased

redundancies in bin indexes by our quantization table designed

for block-based DCT coefficients, improving compression

ratios further.

3) We compare our compressor with state-of-the-art com-

pressors, SZ-1.4 and ZFP, using six scientific datasets from

three real scientific applications, FLASH [29], CMIP5 [30],

and Nek5000 [31], [32]. Our experimental results demon-

strated that our compression approach achieves compara-

ble performance with regard to compression ratio, compres-

sion accuracy (Maximum Relative Error, Normalized Root-

Mean-Square Error (NRMSE), the Peak Signal-to-Noise Ratio

(PSNR), and Pearson correlation) and compression speed. On

the evaluated data, our compressor achieves 3x–38x compres-

sion ratios while ensuring user-specified error bounds.

4) Lastly, we reconstruct the data from two solvers (Sedov

and Cellular) in FLASH, and investigate them under several

checkpoint/restart scenarios. It is shown that restarts from

lossy state are viable without any application disruptions, and

the propagation of single and compounding errors remain

within the user-specified error bounds. This demonstrates that

our compression technique can seamlessly work for check-

point/restart in FLASH application workflows.

II. BACKGROUND

A. Discussion of Prior Work

Datasets generated by HPC applications usually exhibit

diverse characteristics, and thus the compression performance

may vary largely in different applications. Prior studies such as

ZFP [9] have demonstrated that transform-based compression

can provide high data decorrelation efficiency. Because this is

desirable, researchers have been attracted to apply transforms

(well utilized in JPEG, JPEG2000 [33], and MPEG [34]) to

various HPC datasets.

Woodring et al. [35] used the JPEG 2000 technique on

climate data compression, and Belmon et al. [36] used wavelet

transform for spacecraft data compression. However, these

works were limited to evaluating datasets from only one

specific domain. Sasaki et al. [37] applied the Haar wavelet

transform (HWT), and Li et al. [38] applied the Cohen-

Daubechies-Feauveau wavelet transform (CDF 9/7) in their

compressors. However, HWT requires multiple levels of de-

composition while CDF 9/7 is limited to the levels of trans-

forms for information compaction. Yeo et al. [39] and Ratnakar

et al. [40] applied discrete cosine transform (DCT) for its high

efficiency on data volume rendering, however, their approaches

are less capable of bounding errors. It should be noted that

applying JPEG or MPEG techniques directly in scientific data

compression will usually introduce a large number of errors.

Therefore, quantifying errors and proving the viability of the

compressors for checkpoint/restart become important. Though

Sasaki et al. [37] and Woodring et al. [35] showed certain

precision of their compressors, their techniques were limited

to exhibiting the stability and viability for checkpoint/restart

mechanisms. ZFP [9] employed its own optimized data trans-

form rather than using existing discrete ones, however, the

reconstruction errors were not strictly bounded in ZFP, and

the compression ratio was optimized mainly for 2D or 3D

structured datasets.

B. Discrete Transforms

There are several well-known transforms such as dis-

crete cosine transform (DCT), discrete wavelet transform

(DWT), Cohen-Daubechies-Feauveau (CDF), and Fast Walsh-

Hadamard (FWHT) that can be applied in a lossy com-

pressor. While selecting the appropriate transform type for

HPC datasets (in floating-point numbers) or designing an

optimized transform like [9] is challenging, one should note

that most of the commonly used discrete transforms share the

same beneficial property: many natural signals have concise

representations of original data after transforms.

We illustrate this property by using the “rlds” dataset from

CMIP5 (shown in Figure 1a). Figure 1b shows the distribution

of coefficients (in frequency domain) after applying a discrete

transform (the Haar from DWT is used as an example). The

trend sub-signal on the left half of Figure 1b shows a concise

representation of the original data. The sub-signal on the right

half of the figure presents its variations (defined as high-

frequency coefficients), which are significantly smaller than

the original datapoints. This is because discrete transforms

tend to redistribute the energy contained in the signal and

condense most of the energy into a small number of dominant

coefficients (defined as low-frequency coefficients). The en-

ergy represents the data information, and the sum of squares

80

0 2000 4000 6000 8000 10000 12000
data point

0

100

200

300

400

500
da

ta
 v

al
ue

(a)

0 2000 4000 6000 8000 10000 12000
transformed coefficient

-200

0

200

400

600

800

co
ef

fic
ie

nt
 v

al
ue

(b)

0 2000 4000 6000 8000 10000 12000
transformed coefficient

-200
0

200
400
600
800

1000
1200
1400

co
ef

fic
ie

nt
 v

al
ue

(c)

0 2000 4000 6000 8000 10000 12000
data point

0

100

200

300

400

500

da
ta

 v
al

ue

original data
reconstruction data

(d)

Fig. 1: The distribution of rlds dataset in various forms. (a)

original data. (b) after applying 1-level Haar wavelet trans-

form (HWT). (c) after applying 3-level HWT. (d) comparison

between the original and reconstructed data with 3-level HWT

(discarding high-frequency coefficients).

of the magnitudes of the coefficients usually represents the

total data information [22].

For more concise representations of the original signal

in transform-based compression, a decomposition process

(e.g., multi-level decomposition) is commonly implemented.

This process involves a recursive application of partitioning

and transforming on high-frequency components, which is

compute-intensive. For instance, Figure 1c shows the distri-

bution of coefficients after applying 3-level decomposition.

It is observed that the amount of low-frequency coefficients

Fig. 2: An illustration of block decomposition with DCT using

the rlds dataset. Our method is applicable to data of any

dimensions as we regard all of them as flattened data.

in Figure 1c is less than that in Figure 1b, and also the

values of low-frequency coefficients in Figure 1c are higher.

This indicates that each of these low-frequency coefficients

(shown on the left in Figure 1c) carries a larger percentage of

information from the original data.

The above-mentioned unique features of discrete data trans-

forms inspired us to design a transform-based lossy com-

pressor. We designed our compressor with the following key

questions in mind: 1) How do we capture dominant coefficients

without incurring compute-intensive steps, such as recursive

transforms? 2) Since we know that most of the transforms

are lossless and the errors are introduced during the quanti-

zation or the elimination of high frequency coefficients (as

shown in Figure 1d), how do we control the errors during

quantization while achieving high compression ratios? 3) What

is the impact of lossy compression in real-world application

workflows?

III. PROPOSED LOSSY COMPRESSOR

A. Block Decomposition with DCT

In our compressor, we select Discrete Cosine Transform

(DCT) (the most commonly used DCT-II) as our transform

method. Since DCT itself does not clearly favor any fre-

quencies (as shown in Figure 3a), we design a novel block

decomposition strategy, as illustrated in Figure 2. The inspira-

tion comes from JPEG and MPEG techniques, where the first

pixel of an image (i.e., the top left pixel in a 2D image) or

the first frame of a video is stored as the most informative

content during compression. In a similar way, we consider

the first DCT coefficient as the most informative coefficient

(i.e., DC coefficient which contains zero frequency), and the

remaining coefficients as the AC coefficients (contain non-zero

frequencies).

In our decomposition, we first partition data into small

blocks. Specifically, we choose the block size of 64 as it can be

used as 8×8 in 2D and 4×4×4 in 3D. Then we apply DCT on

block-based coefficients. Next, we collect the DC coefficient

from each block, organize them based on the block sequence

order, and consider them as low-frequency coefficients for the

81

0 2000 4000 6000 8000 10000 12000
transformed coefficient

-500

-300

-100

100

300

500
co

ef
fic

ie
nt

 v
al

ue

(a)

0 2000 4000 6000 8000 10000 12000
transformed coefficient

-400

0

400

800

1200

1600

co
ef

fic
ie

nt
 v

al
ue

(b)

Fig. 3: The distribution of DCT coefficients. (a) after applying

DCT transform. Note that we show the coefficients in range [-

500, 500] for illustrative purposes only. The actual coefficients

are in range [-8.4879e+03, 3.3362e+04]. (b) after applying

block decomposition with the block size of 8. Note that the

block size of 8 (instead of the block size of 64) is used here

to show its similarity to 3-level HWT (as shown in Figure 1c)

in terms of coefficient distribution.

entire data. The remaining AC coefficients are considered as

the high-frequency coefficients. We note that the block size

affects not only precision but also compression ratios and

availability of parallelism. We also note that, while one can

employ recursive DCT, but it gives lower compression ratios

because of an extra index and sorting/ordering coefficients.

Figure 3b shows the distribution of DCT coefficients after

applying our block decomposition strategy. This indicates that

our decomposition strategy is able to improve the ability of

DCT to distinguish dominant frequency coefficients. Also,

based on the experiments on the rlds dataset, we found that

the transformation time of a DCT with block decomposition

(block size of 64) was an average of 3x faster than that

of a 6-level HWT (N -level HWT transforms or DCT with

block decomposition size of 2N will generate low-frequency

coefficients with the same length of 1/2N). Therefore, by

applying a block decomposition strategy with DCT, we avoid

not only the storage-consuming sorting step during transform

but also time-consuming recursive transforms.

Another advantage of our block decomposition strategy is

that the gradients of small block-based data could be smaller

than that of an entire checkpoint (single iteration). As a result,

applying DCT on block-based data could be more accurate and

efficient, and incurs less memory overhead during encoding

than on an entire checkpoint.

Moreover, we apply an exponent normalization on the

(a) Quantizer-EC

(b) Quantizer-QT

Fig. 4: Overview of our proposed quantizers.

block decomposed coefficients by aligning data values to a

common exponent and expressing each value with reference

to the largest exponent. This alignment unifies the range of

transformed coefficients so that a smaller number of indices

are required during encoding.

B. Quantization Technique

Since the majority of original data information is preserved

in a small number of low-frequency coefficients, we store

them as is and adopt a proper quantization technique on the

high-frequency coefficients. In this section, we propose an

adaptive quantization with two task-oriented quantizers (shown

in Figure 4): either guaranteed maximum relative errors within

specified bounds (Quantizer-EC) or high compression ratios

within reasonable error rates (Quantizer-QT). Since checkpoint

data evolves as simulation goes, our quantizer is determined

for each checkpoint by learning the distribution of transformed

high-frequency DCT components.

a) Quantizer-EC: Quantizer-EC is an adjustable error-

controlled (EC) quantizer, where users can control compres-

sion errors by selecting their desired bound, denoted as P (in

terms of relative error), and a total number of bins, C. Then

a global bound GP is fixed to [−P ∗ C,P ∗ C]. We evenly

partition the global bound GP into C bins, and the width

of each bin is equal to twice of the error bound P . If the

value of a coefficient is within a certain bin range, then it

is approximated as the bin’s center value. By doing this, the

maximum error introduced after quantization will be smaller

than the specified error bound P . For coefficients outside the

global bound GP , we either save them as is to ensure accuracy

or apply an extra truncation to improve the compression

ratio. Algorithm 1 outlines this quantization method in detail.

Although using a larger C can potentially reduce errors, we

fix C to 255 (28−1) because a larger number of bins requires

82

Algorithm 1 The algorithm of Quantizer-EC.

Input: DTH : high-frequency coefficients.
I: the number of checkpoint iteration.
J : the number of high-frequency coefficient in each iteration.
P : a user-specified error bound.
B: bin.
C: bin index.

Output: DT ′
H : approximated coefficients.

1: for i = 1, 2, . . . , I do
2: Evenly partitioning global bound [−2P ∗ 255, 2P ∗ 255] into 255 bins
3: for j = 1, 2, . . . , J do
4: if DTH i, j ∈ Bi,c, c = 1, 2, . . . , 255 then
5: DTH i, j′ ← approximation (center value of Bi,c)
6: else
7: DTH i, j′ ← DTH i, j
8: end if
9: end for

10: end for

extra encoding steps in addition to Huffman coding for the bin

index. Smaller bin sizes also can be used but we find using 255

(or 1-byte) maximizes compression ratios and efficiency with

our encoding scheme. This binning strategy is straightforward

and can be applied to high-frequency coefficients from other

transforms like wavelets.

It should be noted that the binning mechanism described

above is applied in the frequency domain (i.e., DCT co-

efficients), not in the spatial domain (i.e., original data).

Therefore, extra errors could be introduced during the inverse

transform for reconstructing data from lossy state. If the maxi-

mum compression errors (the difference between reconstructed

data and original data) must be guaranteed within the user-

specified error bound P , a revised error bounding method

is needed. This strict error guarantee is dependent on the

transform employed because each transform has a different

inverse transform property. For DCT, its inverse transform

has the same computation as the non-inverse one, which is

calculated as the sum of weighted coefficients. Mathematically

speaking, the new max error in the spatial domain is then

calculated as
√
N times the max error in the frequency domain

(where N is the block size). Therefore, users need to set their

error bound to P /
√
N in the frequency domain such that,

after inverse transforming, the compression errors are bounded

within P in the original domain. This makes DCT with

Quantizer-EC (namely DCT-EC) a conservative yet efficient

compressor.

b) Quantizer-QT: Quantizer-EC described so far applied

the quantization to AC coefficients (high-frequency) directly.

However, there is an opportunity to improve compression

ratios further by applying various quantization methods to AC

coefficients so that the number of bits required for encoding is

reduced. This is inspired by the property of discrete transforms

wherein spatial frequencies represent the detailed information

of the original data. In other words, if the original data values

are spatially smooth (which is common in many scientific

applications that model physical phenomenon), a block in the

DCT domain will have smooth high-frequency coefficients

(i.e., with small variations).

To verify whether there is exploitable smoothness in high-

frequency coefficients, we take the rlds and Eddy datasets

1 9 17 25 33 41 49 57 64
block coefficient

-5
0
5

10
15
20
25
30
35

co
ef

fic
ie

nt
 v

al
ue

(a) rlds

1 9 17 25 33 41 49 57 64
block coefficient

-15

-10

-5

0

5

10

co
ef

fic
ie

nt
 v

al
ue

(b) Eddy

Fig. 5: The distribution of DCT block coefficients. (a) and (b)

show the overlay of all blocks in a single checkpoint after

applying transform and exponent normalization on rlds and

Eddy datasets with block size of 64.

(described in Table I) as examples and plot the overlays of

their block coefficients, as depicted in Figure 5a and Figure 5b,

respectively. Note that these two figures show the overlays of

all the blocks of a single checkpoint after applying the data

transform, not the distribution of the checkpoints shown in

step d of Figure 2. Our investigation of these plots leads to

several findings.

First, most distributions of block coefficients demonstrate

two distinctive patterns: 1) the DC coefficient (the first block

coefficient) contains most of the data information, and the

remaining ones are either small values or zeros (as depicted

in Figure 5a); and 2) besides the first dominant coefficient,

there are a few secondary-informative coefficients, or spikes

(as depicted in Figure 5b). To confirm the occurrence of these

patterns in scientific datasets, we define two cases: Case 1 is

when DC coefficient carries more than 90% of the total energy

of a block, and Case 2 is when Case 1 is not applicable but

the top three dominant coefficients carry more than 90% of

the total energy. Our statistical analysis indicates that there

is an average of 62.67% occurrence of Case 1 and 16.95%

occurrence of Case 2 on six evaluated datasets (described in

Table I). The total occurrence of Case 1 and Case 2 illustrates

that most of the data information can be represented by a

small number of coefficients. In other words, most of the block

coefficients are small in magnitude (i.e., smooth) and contain

less data information.

Second, it is worth mentioning that different checkpoint

data in the same dataset show a similar block pattern (i.e.,

the transformed coefficients capture temporal redundancy).

Also, the secondary-dominant coefficients (spikes) are always

83

Algorithm 2 The algorithm of Quantizer-QT applied to block

coefficients in a single iteration.

Input: BA: AC block coefficients.
qt: quantization table (initial value are set to zeros).
M : the number of blocks.
N : the number of block coefficient in each block, also the number of qt’s coefficient.

Output: BA′: approximated coefficients.
for n = 1, 2, . . . , N do

2: for m = 1, 2, . . . ,M do
if abs (BAn,m) ≥ qtn,1 then

4: qtn, 1← abs (BAn,m)
end if

6: end for
end for

8: BAn,m′ ← BAn,m
qtn,1 , apply algorithm EC on BAn,m′

clustered/oscillated around similar positions, as shown in Fig-

ure 5b. Therefore, if we can model the repetitive pattern from

one checkpoint into a quantization table, then it can be applied

to the blocks showing the same patterns in other checkpoints.

Exploiting the same spatiotemporal pattern not only simplifies

our quantization step (e.g., elimination of a zigzag order used

in JPEG), but also reduces the number of bits required to

represent coefficients.

Since most of the block coefficients show descent smooth-

ness and repetitiveness (as mentioned in above findings),

we design a quantization table qt in our quantizer, namely

Quantizer-QT. We generate qt by finding the maximum

value of the nth coefficient over all the blocks and build a

quantization table of length N − 1, where N is the block

size and n ≤ N . Note that the DC coefficients of the

blocks are not included in this step as they are saved as

is. As outlined in Algorithm 2, qt is calculated as qtn,1 =
max {|BAn,1| , |BAn,2| , |BAn,3| , ..., |BAn,m|}, where m is

the total number of decomposed blocks and the input data

is a one-dimensional floating-point array. All AC coefficients

are then converted into a global bound and quantized using

Quantizer-EC after being divided by qt.
As an example of how Quantizer-QT works, we select

rlds and Eddy datasets to demonstrate our design. Figure 6c

and Figure 6d show the distribution of block coefficients

of rlds and Eddy after being divided by their quantization

tables shown in Figure 6a and Figure 6b. As we can see, the

resulting coefficients require much fewer bit representations

after quantization table is applied as they are much narrower in

range. Our Quantizer-QT is a mechanism for striking a balance

between loss of precision and compression ratio. Therefore,

DCT with Quantizer-QT (namely DCT-QT) is designed for

scientists who want full compression potential but with less

tight error bounds.

C. Data Encoding

The last step of our lossy compression is to encode the

data into our compressed format. In this stage, the first dom-

inant coefficient in each block is stored as its original value.

The remaining high-frequency coefficients will be quantized

and stored as their corresponding approximated values. If a

coefficient lies within the global bound, it will be stored as

the bin’s center value; otherwise, it will be saved as is for

1 8 15 22 29 36 43 50 57 63
block coefficient

0

2

4

6

8

co
ef

fic
ie

nt
 v

al
ue

(a) rlds (qt)

1 8 15 22 29 36 43 50 57 63
block coefficient

0

2

4

6

8

co
ef

fic
ie

nt
 v

al
ue

(b) Eddy (qt)

1 10 19 28 37 46 55 63
block coefficient

-5
0
5

10
15
20
25
30
35

co
ef

fic
ie

nt
 v

al
ue

(c) rlds

1 10 19 28 37 46 55 63
block coefficient

-15

-10

-5

0

5

10

co
ef

fic
ie

nt
 v

al
ue

(d) Eddy

Fig. 6: An example quantization table for a single checkpoint

of (a) rlds and (b) Eddy. The overlay of AC coefficients after

applying individual qt to (c) rlds (d) Eddy.

guaranteeing error rates. For DCT-QT, a 1 × N quantization

table (in double-precision format) needs to be saved. An extra

1 bit is also needed to distinguish the out-of-range coefficients

and approximated coefficients. Lastly, we apply Gzip to bin

indices and dominant coefficients, which further improves the

compression ratio. While we use Gzip, the choice of using

add-ons such as Huffman, Gzip, ZSTD depends on user’s

need, i.e., higher compression ratios vs. higher compression

speed. Note that our encoding scheme can be performed on the

decomposed block, which is similar to ZFP, allowing random

read/write access to compressed floating-point data at block

84

TABLE I: Evaluated Datasets and their characteristics.

Code Dataset Description Size

CMIP5
rlds Surface downwelling longwave radiation 218 MB
mrsos Moisture content of soil layer 218 MB

FLASH
Sedov Hydrodynamical test code involving strong shocks

and non-planar symmetry
576 MB

Cellular Burn simulation: cellular nuclear burning problem 1.35 GB

Nek5000
Eddy 2D solution to Navier-Stokes equations 820 MB
Vortex Inviscid vortex propagation: tests the problem in

earlier studies of finite volume methods
580 MB

granularity.

Huffman encoding or Gzip employed here can improve

compression ratios by removing redundancies but can be

time-consuming. However, our approach does not involve

other computationally-intensive tasks. For example, unlike

ZFP where floating-point data is converted into fixed-point

representations before transform, we apply DCT directly on

floating-point data. DCT itself is also fast compared to other

transforms and can be performed efficiently because of our

block decomposition. DCT transform speed is related to data-

size and larger data size will lead to a linear time increase.

IV. EVALUATION

A. Experimental Setup

1) System: We conducted our experiments on the Mas-

sachusetts Green High Performance Computing Cluster

(MGHPCC) for running FLASH and Nek5000 applications

at various scales ranging from 64 to 1,024 cores to gen-

erate datasets for our experiments. We used MPICH-3.2

and PnetCDF-1.7.0 for running the evaluated applications

(FLASH-4.2.1 and the latest version of Nek5000 solvers from

the repository).

2) Dataset: We used six real-world scientific datasets ob-

tained from three HPC code packages: FLASH, CMIP5, and

Nek5000, as shown in Table I. The number of checkpoints is

between 153 and 1,000 depending on datasets. The applica-

tions used in our evaluation are from three different scientific

domains: climate simulation, hydrodynamic simulation, and

nuclear combustion simulation. They all produce double-

precision floating-point data. For the solvers and datasets

provided in the FLASH code, we evaluated the five most

important variables: temperature, pressure, density, initial en-

ergy, and total energy from each checkpoint file. For the

benchmarks provided in the CMIP5 code package, we used

two atmospheric outputs of climate simulations: rlds and

mrsos (stored in a separate 1D array). These two datasets are

known to be hard to compress, due to less correlation between

neighboring datapoints compared to the mesh data produced

by conventional simulations, such as hydrodynamics and fluid

dynamics.

3) Evaluated Schemes: We compared our compression al-

gorithms with two state-of-the-art lossy compressors: SZ (SZ

1.4) and ZFP. SZ represents prediction-based compressors

which utilize curve-fitting, scalar quantization and Huffman

coding to compress predictable data points. ZFP represents

Fig. 7: The bar graphs (primary y-axis) show the compression

ratios using off-the-shelf JPEG and JPEG 2000 techniques,

with quality of 75; The line graphs show the Entropy of

evaluated datasets.

transform-based compressors which include mantissa conver-

sion and orthogonal transformation. Other lossy compressors

were not evaluated here as they exhibited similar or less

competitive results to SZ and ZFP [20]. Lossless compressors

were not considered in our evaluation due to their limitation in

compression ratios (e.g., no more than 2x based on Shannon’s

theorem summarized in [6]).

4) Evaluation Metrics:
a) Entropy: Shannon entropy, a popularly used metric in

lossless compression, is used to predict the compressibility of

datasets. Specially, the Entropy (H in bits) of a dataset x is

calculated as follows: H(x) = −∑n
i=1 P (xi)log(P (xi)).

b) Compression Ratio and Accuracy: Compression ratio
(CR), is used to evaluate the size reduction from compression,

which is defined as the original size divided by the compressed

size. To measure the difference between the original data

and the reconstructed data, we use the metrics defined in Z-

checker [41], a framework for assessing lossy compressors

for scientific data. Specifically, we use: (1) Maximum Relative

Error (denoted as max θ), which is calculated as the maximum

absolute error divided by the value range of the data. We

denote θ as the relative error instead of pointwise error because

of the different value ranges exhibited in datasets. In our

compression algorithm, users can define their own relative

error bound (P). For DCT-EC, the relative error (θ) is guar-

anteed within the error bound; (2) Average Error: Normalized

Root-Mean-Square Error (NRMSE) and Mean Relative Error

(θ̄) are used to measure average relative error; (3) Distortion

and Correlation: The Peak Signal-to-Noise Ratio (PSNR) and

Pearson Correlation are used to evaluate compression error.

B. Evaluation Results

1) Entropy and Compression Ratio: We first use Shannon

Entropy as well as the achieved compression ratios from the

image-based compression techniques, JPEG and JPEG2000

to estimate the compressibility of the datasets. We use off-

the-shelf JPEG techniques as a compression-ratio indicator

by fixing compression quality. As shown in Figure 7, the

entropies of rlds, mrsos, Vortex and Eddy are higher and

their compression ratios are lower than those of Sedov and

Cellular. Therefore, we consider rlds, mrsos, Vortex and Eddy

as hard-to-compress datasets. It is interesting to note that the

85

(a) error bound=1E-3

(b) error bound=1E-4

(c) error bound=1E-5

Fig. 8: The bar graphs (primary y-axis) show compression

ratios for DCT-EC, SZ, and ZFP with the max error bounds

(P) of (a) 1E−3, (b) 1E−4 and (c) 1E−5. The markers

(secondary y-axis) show deviations between original data and

reconstructed data in terms of NRMSE with different lossy

compressors. (blue circle: DCT-EC, orange triangle: SZ, grey

square: ZFP).

compression ratios achieved by applying JPEG are higher than

the ones from JPEG 2000.

2) Compression Ratio and Error Bound: Figure 8 presents

the compression ratios (CRs) of DCT-EC, SZ and, ZFP, when

P is set to 1E−3, 1E−4, and 1E−5, respectively. Since ZFP

might not respect the error bound, for a fair comparison, we

manually adjust P of ZFP to guarantee that the max θ is

smaller than P . While we observe an overall trend that stricter

error bounds give lower CRs as shown in Figure 8, DCT-EC

Fig. 9: The bar graphs show compression ratios for DCT-QT,

SZ, and ZFP whereas the markers show deviations between

original data and reconstructed data in terms of Mean Relative

Error (θ̄).

shows the highest CRs for Sedov and Cellular for all three

error bounds we evaluated. For example, when P is 1E−3, the

CR of DCT-EC for Cellular is 38, which is 290% and 790%

higher than SZ’s 13 and ZFP’s 4.8, respectively. For Sedov,

with P=1E−5, the CR of DCT-EC is 7.1, which is 140% and

167% higher than SZ’s 5 and ZFP’s 4.2, respectively. It is

also shown that DCT-EC has the highest CRs for Eddy and

Vortex with P of 1E−3. We observe that ZFP has the best

compression ratios for mrsos, which is one of the hard-to-

compress datasets according to our entropy analysis (discussed

in Section IV-B1). DCT-EC did not perform well with mrsos

because of its characteristics: high entropy but low energy

concentration after transforms. Our analysis indicates that ZFP

requires fewer bits to encode the coefficients in mrsos than

DCT-EC and SZ. Figure 8 also presents the average errors (in

terms of NRMSE) for DCT-EC, SZ and ZFP with P of 1E−3,

1E−4, and 1E−5. It is shown that, for most of the datasets,

both ZFP and DCT-EC produce relatively lower average error

than SZ does. DCT-EC also produces a low average error while

achieving high CRs on Sedov and Cellular.

We next compare the performance of DCT-QT with SZ

and ZFP. Since the coefficients in DCT-QT are adjusted by

the quantization table, DCT-QT may not strictly bound the

user-defined error rates. Therefore, for a fair comparison, we

adjusted P and evaluated CRs of SZ and ZFP by aligning the

mean relative error (θ̄) to the same value for each dataset. As

shown in Figure 9, DCT-QT achieves much higher CRs than

SZ and ZFP on rlds, Sedov, Cellular, Eddy, and Vortex. The

CR on mrsos is close to 10, which is quite competitive.

To prove how much higher compression ratio DCT-QT

could achieve while guaranteeing max θ within certain error

bound, we compare DCT-QT with SZ by adjusting SZ’s P to

max θ of DCT-QT. The comparison result shows that DCT-

QT can achieve CRs of 122.83, 26, 203.10, 183.54, 19.65

and 62.27 on rlds, mrsos, Cellular, Sedov, Eddy, and Vortex,

respectively, while SZ can achieve CRs of 42.00, 19.62, 88.21,

141.32, 16.09 and 59.18, respectively. (The specific max θ
is set to 5E−2, 1E−2, 7E−2, 8E−2, 1.5E−2, and 1E−2).

It is shown that with less tight error bounds, the CR of

86

TABLE II: Evaluation of Peak Signal-to-Noise Ratio (PSNR (dB)) with different lossy compressors on selected datasets.

max θ
rlds mrsos Sedov Cellular Eddy Vortex

DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ
1E−3 76.85 67.01 64.83 83.25 70.56 66.34 81.14 84.53 67.27 76.89 73.51 64.98 72.08 70.49 64.77 75.79 68.67 64.77
1E−4 97.30 91.05 84.79 104.58 94.58 85.647 104.41 101.20 86.55 96.91 91.86 84.83 92.83 88.57 84.77 95.77 86.69 84.77
1E−5 120.81 109.08 Inf 124.88 112.66 106.35 127.94 121.28 107.81 117.98 121.98 109.42 115.70 106.63 Inf 118.51 104.70 104.82

TABLE III: Evaluation of Pearson correlation with different

lossy compressors on selected datasets.

max θ
rlds mrsos

DCT-EC ZFP SZ DCT-EC ZFP SZ

1E−3 ≥1-10−7 ≥1-10−6 ≥1-10−6 ≥1-10−8 ≥1-10−7 ≥1-10−6

1E−4 ≥1-10−9 ≥1-10−9 ≥1-10−8 ≥1-10−10 ≥1-10−9 ≥1-10−8

1E−5 ≥1-10−12 ≥1-10−11 ≥1-100 ≥1-10−12 ≥1-10−11 ≥1-10−10

max θ
Sedov Cellular

DCT-EC ZFP SZ DCT-EC ZFP SZ

1E−3 ≥1-10−7 ≥1-10−8 ≥1-10−6 ≥1-10−7 ≥1-10−7 ≥1-10−6

1E−4 ≥1-10−10 ≥1-10−9 ≥1-10−8 ≥1-10−9 ≥1-10−9 ≥1-10−8

1E−5 ≥1-10−12 ≥1-10−11 ≥1-10−10 ≥1-10−11 ≥1-10−12 ≥1-10−11

max θ
Eddy Vortex

DCT-EC ZFP SZ DCT-EC ZFP SZ

1E−3 ≥1-10−7 ≥1-10−6 ≥1-10−6 ≥1-10−7 ≥1-10−6 ≥1-10−6

1E−4 ≥1-10−9 ≥1-10−8 ≥1-10−8 ≥1-10−9 ≥1-10−8 ≥1-10−8

1E−5 ≥1-10−11 ≥1-10−10 ≥1-100 ≥1-10−11 ≥1-10−10 ≥1-10−10

DCT-QT increases faster than that of SZ. The high CRs

achieved by DCT-QT can help scientists who have special

needs on checkpoint reduction but with fewer constraints on

error precision. Overall, both DCT-EC and DCT-QT show

remarkably higher compression ratios for FLASH datasets

(multi-physics, hydrodynamic code) and provide comparable

results for the other datasets.

3) Distortion and Correlation: Table II and III show the

PSNRs and the Pearson correlation coefficients for DCT-EC,

SZ and ZFP. From Table II, we can see that with P of

1E−5, all three compressors obtain PSNRs higher than 100.

Compared with SZ and ZFP, DCT-EC obtains a higher range

between 110 and 120 on most datasets. From Table III, we can

see that all three compressors have “five nines” [42] or better

correlations with all three P s. For DCT-QT, it obtains PSNRs

of no more than 50 and Pearson correlations of no more than

0.9999 on six datasets (with max θ of around 1E−3), which

shows its limitation in compression precision compared with

DCT-EC.

4) Distribution of Compression Errors: Figure 10 shows

the distribution of relative errors for DCT-EC, SZ, and ZFP

with P of 1E−4. We can see that the distribution of com-

pression error for SZ is nearly uniform while those for ZFP

and DCT-EC are nearly normal. Moreover, DCT-EC is more

conservative with regard to the accuracy requirement, which

is due to its transform property discussed in Section II-B and

Section III-B. Also, from the cumulative distribution function

(CDF), we can see that more compression errors are centered

around zero for DCT-EC than SZ and ZFP. This illustrates that

DCT-EC introduces less errors than SZ and ZFP in a given

P . We observe similar trends with P of 1E−3 and 1E−5.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Relative Compression Error 10-4

100

101

102

103

104

105

106

C
ou

nt
s

(a) SZ

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Relative Compression Error 10-4

100

101

102

103

104

105

106

C
ou

nt
s

(b) ZFP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Relative Compression Error 10-4

100

101

102

103

104

105

106

C
ou

nt
s

(c) DCT-EC

Fig. 10: The distribution of relative error (θ), with P=1E−4,

for (a) SZ (b) ZFP (c) DCT-EC (similar trend in DCT-QT). The

primary y-axis shows the error histogram and the secondary

y-axis shows the cumulative distribution function (CDF).

5) Impact on Checkpoint/Restart: In real simulation runs,

the errors of successive results after restarting from failures

may or may not converge. Therefore, evaluating the impact of

errors introduced by lossy compression against the original

values at each time step is critical, even if all evaluated

compressors provide a mechanism to guarantee error bounds.

Since DCT-EC, SZ and ZFP are designed for scientists who

have high compression precision demands, we choose them

for real simulation workflow comparison. To quantify the

impact of errors, we obtain their compressed restart files and

compare with their actual restarts. Since the higher CRs on

Sedov and Cellular datasets are very promising, we use Sedov

and Cellular solvers available in FLASH for comparison.

Specifically, we evaluate the restart of Sedov and Cellular at

time step 25 and 195, respectively, and run them until the

87

(a) Cellular (single restart)

(b) Sedov (single restart)

(c) Cellular (multiple, or compound, restart)

Fig. 11: The maximum relative error variation during simula-

tion timestamps in two solvers in FLASH. The y-axis shows

the maximum relative error between the data generated from

restart using reconstructed data and the original data. Note

that, in (a) and (b), the restart points of SZ and DCT-EC show

value no higher than 1E−5.

simulation ends. We have tried the restart from 1 to the final

steps and observed the same effect because each step, after

restart, solves the same Sedov explosion problem. We choose

step 25 and 195 to reflect the randomness. The evaluations are

done with error bound P of 1E−3, 1E−4, and 1E−5.

(a) Compression

(b) Decompression

(c)

Fig. 12: (a) Compression and (b) Decompression speed (MB/s)

using DCT-EC, SZ and ZFP with P of 1E−3. Similar trends

were observed with P of 1E−4 and 1E−5. (c) Breakdown of

compression and decompression time with P of 1E−3.

First, we observe that the overall execution, in terms of the

number of simulation steps to converge, is not affected by the

reconstructed data. Both solvers end at the same simulation

time steps as the original executions. This demonstrates that

the error in the reconstructed data is not significantly influenc-

ing the mathematical formulas that each solver is computing.

Next, we evaluate how the error introduced by each com-

pressor translates into errors in the actual scientific data

and its impact on real application simulations. As shown

in Figure 11a, the reconstructed restart file obtained from

SZ with P of 1E−3 generates a large spike after 20 steps

from the restart. While we conjecture that the exact cause

of this spike is related to a specific mathematical formula

88

in Cellular, it needs further verification from the domain

scientist. From Figure 11a, we observe that the reconstructed

restart files obtained from SZ with all three P s show small

divergence. The max θ keeps increasing for all cases. We

attribute this to the inherent error distribution in SZ, where

some scientific researchers require the compression errors to

follow Gaussian white noise distribution to satisfy the viability

of simulation. From Figure 11a, we also observe that, for all

reconstructed restart cases, the relative error for ZFP or DCT-

EC becomes relatively stable after a couple of simulation time

steps and finally shows the trend of decaying. With the highest

allowable error rate (P= 1E−3), DCT-EC shows a quicker

stabilization than the other two compressors. A similar trend

is also observed for Sedov, as shown in Figure 11b. With

the lowest error rate (P = 1E−5), all three compressors show

slower convergence, and thus more simulation steps are needed

before they stabilized.

In addition, we evaluate the effect of compounded errors

with P of 1E−3 on Cellular using the following restart

scenarios: (1) two successive restarts (which is similar to

[43]), at time step 195 and 196, and (2) two restarts at two

different time intervals (second restart at time step 230). Both

scenarios show that the compounded errors overlap with the

errors generated from the original restart, which is encouraging

because all three compressors work well with multiple restarts.

DCT-EC shows minimal impact of compounded errors and

remains below the error bound P .

All of these results demonstrate that both solvers (Sedov and

Cellular) worked well with various checkpoint/restart scenar-

ios (single or multiple restarts) in FLASH without disrupting

the original execution time and without a noticeable deviation

from numerical convergence. Therefore, as far as FLASH

solvers are concerned, all compressors do not require users

to adjust data for consistency after a restart.

6) Compression Throughput: Figures 12a and 12b present

the average compression and decompression speeds (excluding

disk I/O) on all evaluated datasets using DCT-EC, SZ, and

ZFP, with P of 1E−3. As shown in these figures, DCT-EC

and ZFP outperform SZ on most datasets. This indicates that

transform-based compression is overall faster than prediction-

based compression, at least for the datasets evaluated in this

work. It should be noted that DCT-EC includes Gzip encoding

on indices, while ZFP does not. It is also shown in the figures

that the decompression speeds are faster than compression

speeds on all three compressors, showing a promising result

for HPC workloads since data is compressed once and decom-

pressed frequently. Figure 12c, on the other hand, shows the

breakdown of DCT-EC. We can see that the encoding time

including encoding is around 60% of the total compression

time. For DCT-QT, the quantization takes an average of 26.3%

of the total compression time on all evaluated datasets.

7) Scalability: Table IV presents the scalability results of

the compression and decompression time (excluding the I/O

time) of DCT-EC (with P of 1E−3) on dataset Celluar while

varying the number of threads from 2 to 16. We ran each

experiment ten times and used the average time. As shown

TABLE IV: Scalability of compression and decompression.

Number of Comp Comp parallel Decomp Decomp parallel
threads speedup efficiency speedup efficiency

2 1.99 99.5% 1.99 99.5%
4 3.98 99.5% 3.97 99.25%
8 7.88 98.5% 7.87 98.38%
16 14.7 91.88% 14.9 93.13%

in the table, the parallel efficiencies for both compression

and decompression are at least above 91.8% and have almost

linear speedup with an increasing number of threads. We

attribute this linear speedup to the block-based approach in our

compressor design. For example, DCT transform can be done

in parallel with the decomposed blocks. Subsequent block-

based filtering and quantization can be also done in parallel

without any communication among the distributed blocks. In

order to calculate the exact file offset for locally encoded

data for writing, our method needs to perform parallel prefix

operations, which is straightforward to parallelize. Overall, we

believe that our proposed method is scalable at a production

level.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a lossy compression technique.

Specially, we apply DCT with a novel block decomposition

strategy and design an adaptive quantization with two task-

oriented quantizers: Quantizer-EC and Quantizer-QT. We com-

pare our compressor with SZ-1.4 and ZFP, using six scientific

datasets from three real scientific applications. Our com-

pression approach achieves comparable performance, showing

3x–38x compression ratio while guaranteeing user-specified

error bounds on the evaluated datasets. Moveover, we investi-

gate the reconstructed data from two solvers under several

checkpoint/restart scenarios. It is shown that restarts from

a lossy state are viable without any application disruptions,

and the propagation of single and compounding errors remain

within the user-specified error bounds. We empirically demon-

strate that our compression technique can seamlessly work

for checkpoint/restart employed in the FLASH application

workflows and thus is considered as a promising approach

for lossy data compression.

In our future work, we plan to expand the proposed com-

pression technique in several ways. First, we plan to improve

the compression ratio of our technique by optimizing the

quantization model. We also want to improve the compres-

sion quality of our technique on larger datasets. Lastly, we

plan to incorporate our compression mechanism into various

layers in the HPC I/O software stack, including MPI-IO [44],

PnetCDF [45], HDF5 [46], and ADIOS.

REFERENCES

[1] P. Beckman, R. Brightwell, B. R. de Supinski, M. Gokhale, S. Hofmeyr,
S. Krishnamoorthy, M. Lang, B. Maccabe, J. Shalf, and M. Snir,
“Exascale Operating Systems and Runtime Software Report,” 2012.

89

[2] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington,
G. Chiu, R. Colwell, W. Dally, J. Dongarra, A. Geist, G. Grider,
R. Haring, J. Hittinger, A. Hoisie, D. Klein, P. Kogge, R. Lethin,
V. Sarkar, R. Schreiber, J. Shalf, T. Sterling, and R. Stevens, “ASCAC
Subcommittee for the Top Ten Exascale Research Challenges,” 2014.

[3] R. J. Small, J. Bacmeister, D. Bailey, A. Baker, S. Bishop, F. Bryan,
J. Caron, J. Dennis, P. Gent, H. ming Hsu, M. Jochum, D. Lawrence,
E. Muñoz, P. diNezio, T. Scheitlin, R. Tomas, J. Tribbia, Y. heng
Tseng, and M. Vertenstein, “A new synoptic scale resolving global
climate simulation using the Community Earth System Model,” Journal
of Advances in Modeling Earth Systems, pp. 1065–1094, 2014.

[4] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka, S. A. Mick-
elson, J. Edwards, M. Vertenstein, and A. Wegener, “A Methodology
for Evaluating the Impact of Data Compression on Climate Simulation
Data,” in Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing (HPDC), 2014, pp.
203–214.

[5] Computational and Information Systems Laboratory, “Yellowstone: IBM
iDataPlex System (Climate Simulation Laboratory),” https://www2.cisl.
ucar.edu/resources/computational-systems/yellowstone, 2012.

[6] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W. keng Liao, and
A. Choudhary, “Data Compression for the Exascale Computing Era
- Survey,” Supercomputing Frontiers and Innovations, vol. 1, no. 2,
2014. [Online]. Available: http://superfri.org/superfri/article/view/13

[7] D. Ibtesham, D. Arnold, K. B. Ferreira, and P. G. Bridges, On the
Viability of Checkpoint Compression for Extreme Scale Fault Tolerance.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 302–311.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-29740-3 34

[8] X. Ni, T. Islam, K. Mohror, A. Moody, and L. V. Kale, “Lossy
Compression for Checkpointing: Fallible or Feasible?” in Proceedings
of the International Conference For High Performance Computing,
Networking, Storage and Analysis (SC), 2014.

[9] P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, Dec 2014.

[10] “GNU Gzip,” http://www.gzip.org/.
[11] P. Lindstrom and M. Isenburg, “Fast and Efficient Compression of

Floating-Point Data,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 5,
pp. 1245–1250, 2006.

[12] M. Dipperstein, “LZSS (LZ77) Discussion and Implementation,” http:
//michael.dipperstein.com/lzss/.

[13] B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. Ross,
“Improving I/O Forwarding Throughput with Data Compression,” in
Proceedings of the IEEE International Conference on Cluster Comput-
ing, Sept 2011, pp. 438–445.

[14] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R. de Supinski,
and R. Eigenmann, “MCREngine: A scalable checkpointing system
using data-aware aggregation and compression,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Nov 2012.

[15] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. S. Chang, S. H. Ku, S. Ethier,
S. Klasky, R. Latham, R. Ross, and N. F. Samatova, “ISOBAR Precondi-
tioner for Effective and High-throughput Lossless Data Compression,” in
IEEE 28th International Conference on Data Engineering, April 2012,
pp. 138–149.

[16] G. Han, X. Wu, S. Zhang, Z. Liu, and W. Li, “Error Covariance
Estimation for Coupled Data Assimilation Using a Lorenz Atmosphere
and a Simple Pycnocline Ocean Model,” Journal of Climate, vol. 26,
no. 24, pp. 10 218–10 231, 2013.

[17] D. Zupanski and M. Zupanski, “Model Error Estimation Employing an
Ensemble Data Assimilation Approach,” Monthly Weather Review, vol.
134, no. 5, pp. 1337–1354, 2006.

[18] J. L. Anderson, “An Ensemble Adjustment Kalman Filter for Data
Assimilation,” Monthly Weather Review, vol. 129, no. 12, pp. 2884–
2903, 2001.

[19] J. S. Whitaker, T. M. Hamill, X. Wei, Y. Song, and Z. Toth, “Ensemble
Data Assimilation with the NCEP Global Forecast System,” Monthly
Weather Review, vol. 136, no. 2, pp. 463–482, 2008.

[20] S. Di and F. Cappello, “Fast Error-Bounded Lossy HPC Data Com-
pression with SZ,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2016, pp. 730–739.

[21] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly Improving
Lossy Compression for Scientific Data Sets Based on Multidimensional
Prediction and Error-Controlled Quantization,” in Proceedings of the

31th IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE Computer Society, 2017.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing). Wiley-
Interscience, 2006.

[23] K. Sayood, Introduction to Data Compression (2nd Ed.). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2000.

[24] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Compressing the Incompressible with
ISABELA: In-situ Reduction of Spatio-temporal Data,” in Proceedings
of the 17th International Conference on Parallel Processing - Volume
Part I, ser. Euro-Par’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 366–379. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2033345.2033384

[25] Z. Chen, S. W. Son, W. Hendrix, A. Agrawal, W.-k. Liao,
and A. Choudhary, “NUMARCK: Machine Learning Algorithm for
Resiliency and Checkpointing,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.
733–744. [Online]. Available: https://doi.org/10.1109/SC.2014.65

[26] Z. Yuan, W. Hendrix, S. W. Son, C. Federrath, A. Agrawal, W. Liao,
and A. N. Choudhary, “Parallel Implementation of Lossy Data
Compression for Temporal Data Sets,” in 23rd IEEE International
Conference on High Performance Computing, HiPC 2016, Hyderabad,
India, December 19-22, 2016, 2016, pp. 62–71. [Online]. Available:
http://dx.doi.org/10.1109/HiPC.2016.017

[27] A. Moon, J. Kim, J. Zhang, and S. W. Son, “Lossy compression on iot
big data by exploiting spatiotemporal correlation,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), Sept 2017, pp.
1–7.

[28] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advan-
tages, Applications. Academic Press Professional, Inc., 1990.

[29] Flash Center for Computational Science, “FLASH User’s Guide: Ver-
sion 4.4,” http://flash.uchicago.edu/site/flashcode/user support/flash4
ug 4p4.pdf, 2016.

[30] G. A. Meehl, C. Covey, B. McAvaney, M. Latif, and R. J. Stouffer,
“Overview of the Coupled Model Intercomparison Project,” Bulletin of
the American Meteorological Society, vol. 86, no. 1, pp. 89–93, 2005.

[31] P. Fischer, J. Lottes, S. Kerkemeier, O. Marin, K. Heisey, A. Oba-
bko, E. Merzari, and Y. Peet, “Nek5000 User Documentation,” http:
//nek5000.github.io/NekDoc/Nek users.pdf, Argonne National Labora-
tory, Tech. Rep. ANL/MCS-TM-351, 2015.

[32] J. W. L. Paul F. Fischer and S. G. Kerkemeier, “nek5000 Web page,”
2008, http://nek5000.mcs.anl.gov.

[33] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression
Fundamentals, Standards and Practice. Norwell, MA, USA: Kluwer
Academic Publishers, 2001.

[34] D. Le Gall, “MPEG: A Video Compression Standard for Multimedia
Applications,” Commun. ACM, vol. 34, no. 4, pp. 46–58, Apr. 1991.
[Online]. Available: http://doi.acm.org/10.1145/103085.103090

[35] J. Woodring, S. Mniszewski, C. Brislawn, D. DeMarle, and J. Ahrens,
“Revisiting Wavelet Compression for Large-Scale Climate Data using
JPEG 2000 and Ensuring Data Precision,” in 2011 IEEE Symposium on
Large Data Analysis and Visualization, Oct 2011, pp. 31–38.

[36] L. Belmon, H. Benoit-Cattin, A. Baskurt, and J.-L. Bougeret,
“Lossy compression of scientific spacecraft data using wavelets.
Application to the CASSINI spacecraft data compression,” Astronomy
& Astrophysics, vol. 386, no. 3, pp. 1143–1152, 2002. [Online].
Available: https://doi.org/10.1051/0004-6361:20020225

[37] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of
Lossy Compression for Application-Level Checkpoint/Restart,” in
Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium, ser. IPDPS ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 914–922. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2015.67

[38] S. Li, S. Sane, L. Orf, P. D. Mininni, J. Clyne, and H. Childs, “Spa-
tiotemporal wavelet compression for visualization of scientific simula-
tion data,” 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 216–227, 2017.

[39] B.-L. Yeo and B. Liu, “Volume Rendering of DCT-Based Compressed
3D Scalar Data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 1, no. 1, pp. 29–43, Mar 1995.

90

[40] V. Ratnakar and M. Livny, “RD-OPT: an efficient algorithm for optimiz-
ing DCT quantization tables,” in Data Compression Conference, 1995.
DCC ’95. Proceedings, Mar 1995, pp. 332–341.

[41] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The
International Journal of High Performance Computing Applications,
vol. 0, no. 0, p. 1094342017737147, 0. [Online]. Available:
https://doi.org/10.1177/1094342017737147

[42] A. Wegener, “Universal numerical encoder and profiler reduces com-
puting’s memory wall with software, fpga, and soc implementations,” in
2013 Data Compression Conference, March 2013, pp. 528–528.

[43] D. Laney, S. Langer, C. Weber, P. Lindstrom, and A. Wegener, “Assess-
ing the Effects of Data Compression in Simulations Using Physically
Motivated Metrics,” in 2013 SC - International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Nov
2013.

[44] Message Passing Forum, “MPI: A Message-Passing Interface Standard,”
Knoxville, TN, USA, 1994.

[45] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel
netCDF: A High-Performance Scientific I/O Interface,” in Proceedings
of the 2003 ACM/IEEE Conference on Supercomputing, ser. SC ’03.
New York, NY, USA: ACM, 2003, pp. 39–. [Online]. Available:
http://doi.acm.org/10.1145/1048935.1050189

[46] The HDF Group. (1997-2017) Hierarchical Data Format, version 5. http:
//www.hdfgroup.org/HDF5/.

91

