
Scalable Deep Learning-Based Microarchitecture
Simulation on GPUs

Santosh Pandey
Stevens Institute of Technology

Hoboken, USA
spande1@stevens.edu

Lingda Li
Brookhaven National Laboratory

Upton, USA
lli@bnl.gov

Thomas Flynn
Brookhaven National Laboratory

Upton, USA
tflynn@bnl.gov

Adolfy Hoisie
Brookhaven National Laboratory

Upton, USA
ahoisie@bnl.gov

Hang Liu
Stevens Institute of Technology

Hoboken, USA
hliu77@stevens.edu

Abstract—Cycle-accurate microarchitecture simulators are es-
sential tools for designers to architect, estimate, optimize, and
manufacture new processors that meet specific design expecta-
tions. However, conventional simulators based on discrete-event
methods often require an exceedingly long time-to-solution for
the simulation of applications and architectures at full complexity
and scale. Given the excitement around wielding the machine
learning (ML) hammer to tackle various architecture problems,
there have been attempts to employ ML to perform architecture
simulations, such as Ithemal and SimNet. However, the direct
application of existing ML approaches to architecture simulation
may be even slower due to overwhelming memory traffic and
stringent sequential computation logic.

This work proposes the first graphics processing unit (GPU)-
based microarchitecture simulator that fully unleashes the poten-
tial of GPUs to accelerate state-of-the-art ML-based simulators.
First, considering the application traces are loaded from central
processing unit (CPU) to GPU for simulation, we introduce
various designs to reduce the data movement cost between
CPUs and GPUs. Second, we propose a parallel simulation
paradigm that partitions the application trace into sub-traces
to simulate them in parallel with rigorous error analysis and
effective error correction mechanisms. Combined, this scalable
GPU-based simulator outperforms by orders of magnitude the
traditional CPU-based simulators and the state-of-the-art ML-
based simulators, i.e., SimNet and Ithemal.

Index Terms—Computer microarchitecture simulation, Ma-
chine learning, High performance computing, GPU acceleration

I. INTRODUCTION

Processor design is predicated on design space exploration
capabilities, which, in turn, rely on methods and tools that
can estimate architecture behavior and performance with con-
fidence ahead of manufacturing. Consequently, cycle-accurate
architecture simulators are of particular interest. Unfortunately,
existing cycle-accurate simulators, such as traditional discrete
event simulators (e.g., gem5 [1]) and their optimized statistical
versions [2], [3], cannot accurately simulate applications of
real-world scale within an acceptable execution time for two
primary reasons.

First, traditional discrete event simulators often experience
extremely long simulation time. For example, using gem5 to
simulate all SPEC CPU2017 benchmarks [4] requires months
to complete on a system with 128 CPU cores and 1 TB
memory. Although many research efforts have been conducted
to improve simulation speed, including software engineering
optimizations [5], [6], [7] and parallelization [8], [9], such
endeavors still fall short at reducing the simulation time to
support practical use. Second, statistical simulations, [10],
[3] while benefiting from shorter turnaround time, experience
lower prediction accuracy as they rely heavily on instruction
sampling schemes that cannot capture all details of the appli-
cation workload being considered.

Given the excitement around wielding the ML hammer
to tackle various architecture problems, such as branch pre-
diction [11], [12] and memory controller [13], [14], there
have been additional attempts to use ML for architecture
simulations, e.g., Ithemal [15] and SimNet [16]. Instead of
modeling each hardware architecture component, ML-based
simulation works at instruction level prediction. It is trained to
capture the impacts of a particular architecture on the currently
executing instructions. Notably, instruction latency can be
expressed as complex functions of the currently executing
instructions and the processor hardware configurations. As ML
excels at deriving the sophisticated rules that govern various
complex functions, recent work shows that it can capture the
architecture simulations in a similar way (see Section VII-A).

Existing ML-based architecture simulators face performance
and efficiency problems, and our analysis reveals two sig-
nificant challenges when trying to accelerate them on GPU
machines. First, current ML-based simulators only use GPUs
for inference because the other steps are not GPU friendly.
However, this design would result in redundant data movement
as the inputs of various instructions share similar contexts.
Further exacerbated by the stringent host/device throughput,
existing ML-based simulators usually fail to offer sufficient
workloads to fully saturate the GPU resources. Second, the
simulation process is still sequential, i.e., the latency prediction

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 c©2022 IEEE

of instructions must happen in order, which limits the degree
of parallelism. Unfortunately, sequential simulation again re-
stricts and diminishes the potential benefits from using single-
GPU to distributed-GPU machines.

Although our proposed optimizations could be applied to
various ML-based simulators (see Section VII-B), such as
SimNet and Ithemal, this paper bases our designs and im-
plementations on SimNet, because: 1) SimNet can handle
lengthy program simulation and complex out-of-order super-
scalar architectures, while Ithemal is limited to static basic
block prediction and targets simplified processor architectures
without caches and branch prediction, and 2) SimNet is about
3× faster than Ithemal due to the efficient use of convolutional
neural networks (CNNs) rather than sequential models.

The contributions detailed in this paper include:
• We rigorously analyze the SimNet simulator and propose

impactful optimizations to avoid various redundant data
movements. In particular, we design GPU-based input
construction, a sliding window-based instruction queue,
a custom convolution layer, and pipelined simulation to
amortize the cost of data movements.

• We introduce a parallel simulation paradigm that parti-
tions the program trace into disjoint sub-traces and sim-
ulates them in parallel to achieve scalable performance.
Further, we rigorously analyze the simulation errors and
develop effective solution techniques to mitigate errors
introduced by the parallelization approach. Our evalua-
tion demonstrates comparable accuracy against the gem5
simulator with parallelization.

• We implement the first fully GPU-based computer ar-
chitecture simulator that can scale up to 282 GPUs
and achieve an unprecedented 553.68 million instructions
per second (MIPS) simulation rate. Overall, the pro-
posed simulator leads to an average speedup of 2,796×,
425,907×, and 971,368× versus state-of-the-art simu-
lators gem5, accurate sequential SimNet, and Ithemal,
respectively.

The reminder of the paper goes as follows: Section II un-
veils the background and motivation for ML-based simulator.
Section III discusses the challenges faced by existing ML
simulators. Sections IV and V present the proposed optimiza-
tions. Section VI describes the evaluation results. Section VIII
discusses the related work and Section IX concludes.

II. BACKGROUND AND MOTIVATIONS

A. Limitations of Traditional Simulation

Traditional simulators [1], [17] are made up of a collection
of software modules that mimic the behavior of individ-
ual hardware components. Each component in the simulator
takes/sends “transactions” from/to other components as input-
s/outputs. The simulation of a computer system is achieved
by simulating every component and its interactions. In recent
years, parallel accelerators, such as GPUs, have been success-
fully applied to many domains, from ML to scientific comput-
ing [18], [19], [20], [21], [22]. They provide enormous perfor-

mance benefits. However, accelerating architecture simulation
on GPUs is rarely explored because of two critical limitations.
First, the simulation of different components is heterogeneous,
while GPUs prefer homogeneous behavior. For example, a
GPU’s single instruction multiple threads (SIMT) paradigm
requires adjacent threads to have similar execution paths and
memory access addresses. Several parallel simulators have
been proposed to simulate individual cores in parallel in a
multi/many-core system [23], [24], [25], [26]. Again, the sim-
ulation of different cores is heterogeneous, and the number of
cores cannot saturate the massive parallelism offered by GPUs.
Second, the fact that different components frequently interact
with each other mismatches with the nature of GPUs, which
fall short in handling frequent communications efficiently. Due
to these impediments, traditional simulators simply cannot
leverage the performance advantages of GPUs.

B. Motivation: ML-based Simulation

ML-based solutions could be the key approach to overcom-
ing the limitations of traditional simulators. In ML-based ap-
proaches [15], [16], the simulated processor is abstracted as a
whole, eliminating the need to simulate individual components
within the processor. Heterogeneous simulation with com-
munication is replaced with accelerator-friendly parallelizable
matrix multiplication. Notable ML-based simulation methods
Ithemal and SimNet both perform instruction-wise simulation.

Ithemal uses a trainable model to predict the throughput
of instructions based on opcode and operands in a basic
block. It maps a basic block into a vector space by recur-
sively feeding instructions in the block to a long short-term
memory (LSTM) model. This approach has a limitation: it
assumes perfect memory accesses and can only predict basic
block performance. Meanwhile, SimNet predicts the latency of
each instruction based on the static instruction properties and
dynamic processor behavior and can be applied to real-world
programs. It simulates out-of-order superscalar processors with
caches with high accuracy using CNNs. Both Ithemal and
SimNet focus on performance prediction or determining cycle
per instruction (CPI) and can achieve high prediction accuracy.
Ithemal reports an average error below 9% for a range of basic
blocks, and SimNet reports average simulation errors of 1-2%
for SPEC CPU2017 [4] benchmarks.

Because Ithemal is limited to basic block prediction and
simple architectures, this paper employs SimNet to demon-
strate how ML-based simulation can be accelerated, although
the optimizations can still be applied to Ithemal (see Sec-
tion VII-B). An ML-based instruction latency predictor is at
the center of SimNet’s simulation approach. The predictor
uses the properties of the to-be-predicted instruction and a
collection of concurrently executing instructions (i.e., context
instructions) as its input features. Context instruction features
are used to determine the architecture states. How fast an
instruction can be executed depends on how busy the required
processor resources are. For example, an instruction that
depends on the result of a previous instruction will have
a larger latency, and providing the destination registers of

previous instructions can help ML models determine if such
a dependency exists (refer to SimNet [16] for more details).

Benchmark Abbr. Benchmark Abbr. Benchmark Abbr.
500.perlbench perl 523.xalancbmk xala 557.xz xz

502.gcc gcc 525.x264 x264 997.specrand f spef
503.bwaves bwav 526.blender blen 505.mcf mcf
508.namd namd 527.cam4 cam4 538.imagick imag

507.cactuBSSN bssn 544.nab nab 554.roms roms
519.lbm lbm 548.exchange2 exch 531.deepsjeng deep
521.wrf wrf 549.fotonik3d foto 999.specrand i spei

TABLE I: Benchmarks.

C. Benchmarks and Model Accuracy

We use the SPEC CPU2017 benchmark (Table I) suite [4]
to evaluate the simulation performance. Out of 21 benchmarks
that are used for experiments, four benchmarks (perl, gcc,
bwav, and namd) are used for training, and the remaining
are employed for evaluation. For most of our evaluation, we
use the trained 3C+2F model from SimNet, which has three
convolution layers and two fully connected layers. The ML
models are trained against a classic out-of-order superscalar
CPU, and Table II shows its configurations. For this model, the
average simulation error of SimNet across 17 test benchmarks
is 2% over gem5.

Parameter Configuration
Core 3-wide fetch, 8-wide out-of-order issue/commit, Bi-mode branch

predictor, 32-entry instruction queue, 40-entry reorder buffer,
16-entry LQ, 16-entry store queue

L1 ICache 48KB, 3-way, Least recently used (LRU), 4 miss status holding
registers (MSHRs)

L1 DCache 32KB, 2-way, LRU, 16 MSHRs, 5-cycle latency
I/DMMU 2-stage translation lookaside buffer (TLB), 1KB 8-way TLB

caches with 6 MSHRs
L2 Cache 1MB, 16-way, LRU, 32 MSHRs, 29-cycle latency

TABLE II: Target processor configuration.

III. CHALLENGES FOR ML-BASED SIMULATION

Challenge No. 1: Frequent CPU-GPU communication.

To construct an ML-based simulator, two fundamental com-
ponents are required. One is an ML-based instruction latency
predictor, and the other is an input constructor that provides the
required instruction features to the predictor. While instruction
latency prediction (i.e., ML inference) is computation intensive
and well suited for GPUs, input construction is memory
intensive and done by CPUs in previous work [15], [16].
These two components require frequent communication, which
generates abundant inefficient data movement between CPU
and GPU. These expensive communications in SimNet are
detailed as follows.

Figure 1 uses a program of six instructions to exemplify the
SimNet simulation workflow. SimNet first performs functional
simulation to generate a trace of features required by the ML
model (step 0), which can be done through fast instruction
simulators/emulators, such as QEMU [27]. Subsequently, the
trace is encoded into numerical representations where each
instruction in the program is represented by an array of 50 en-
tries of instruction attributes. In Figure 1, {0,5,3,..,0,1,0,3,0,..}
represents the instruction attributes of the first instruction.

The instruction attributes include the primary static properties
of instruction (e.g., opcode and registers used) and dynamic
processor states (e.g., memory dependency; branch prediction;
cache miss). All features are represented as integers. A detailed
list of features can be found in [16].

Steps 1 - 4 in Figure 1 depict how the simulator goes
through each instruction in the trace to predict the latency.
Across these steps, each instruction experiences four copies in
order to construct the input for latency inference as follows:
the simulator adds a single instruction from the trace to
the instruction queue every iteration (1) (first copy). For
iteration 0, a trace array of <add eax, 12> is added to the
instruction queue. Of note, the instruction queue holds all the
instructions currently executing (to-be-predicted and context)
on the processor. A variable Clock (highlighted in orange
color on the top left of the instruction queue) is used to track
the current clock cycle of the processor. The Clock is set to 0
before starting the simulation. During simulation, a variable
retire clock is added to the tail of each instruction in the
instruction queue. It stores the clock cycle when that specific
instruction would retire (highlighted in orange color).

Subsequently, we prepare input for the ML model by
concatenating all instructions in the instruction queue (2.1)
(second copy). <add eax, 12> is copied to the input, which is
the second copy. To ensure the input of each instruction is the
same length, SimNet pads the remaining fields of input with
zero. Here, we assume the input length (Context length+1)
is three instructions. For the processor configuration shown in
Table II, the input length is 111 instructions. The input then
is copied to the GPU for inference (2.2) (third copy). Before
inference, SimNet transposes the input to spatially align the
input features of context instructions for the convolution oper-
ator (2.3) (fourth copy). Notably, the third and fourth copies
are comparatively expensive as we need to copy and transpose
Context length+1 number of instructions in each iteration.
At the end, the model predicts three different latencies for the
current instruction, i.e., fetch, execute, and store (3), which
respectively represent the latencies to fetch the instruction,
execute it, and store any result from the instruction to the
memory. Overall, there are four redundant data movements in
the simulator design.

Challenge No. 2: ML-based simulation is sequential in nature.

Similar to traditional simulators, ML-based simulators are
sequential in nature, i.e., they need to go through each instruc-
tion in the execution order. Sequential ML-based simulators
fail to outperform their traditional counterparts as they cannot
efficiently leverage hardware accelerators, such as GPUs,
designed for massive parallel ML inference/training.

Again, using SimNet as an example, the latency prediction
of an instruction requires the context instructions and their
latencies collected from earlier simulations. Specifically, the
predicted latencies from an iteration are used to perform the
update and retire of instructions in the instruction queue as
they could be part of the input for the next iteration. In
Figure 1, the predicted latencies for the first instruction are

Clock: 13

Clock: 15

Instruction queue Clock: 0

Input

Program

0 5 3 … 01030 …

add eax, 12
mov edx, eax
add eax, 1
jle 54
sub edx, eax
mov eax, rax

0 5 3 … 01030 …

Padding

add eax, 12

0 1 3 … 10101 …

0 1 3 … 10101 …

mov edx, eax
13 5 3 … 01030 … 14

13 5 3 … 01030 …

add eax, 12

0 3 3 … 01100 …

0 3 3 … 01100 … 0 0 0 … 00000 …

1 1 3 … 10101 … 17

1 1 3 … 10101 …

add eax, 1

add eax, 12 retires

0
5
3
…
0
1
0
3
0
…

0
0
0
…
0
0
0
0
0
…

0
0
0
…
0
0
0
0
0
…

13
5
3
…
0
1
0
3
0
…

0
0
0
…
0
0
0
0
0
…

0
1
3
…
1
0
1
0
1
…

0
0
0
…
0
0
0
0
0
…

1
1
3
…
1
0
1
0
1
…

0
3
3
…
0
1
1
0
0
…

Iteration 0

Latency

1st copy

2nd copy 3rd
copy

mov edx, eax

4th
copy

0 5 3 … 01030 …
0 0 0 … 00000 …
0 0 0 … 00000 …

Input

GPU

13 5 3 … 01030 …
0 0 0 … 00000 …

0 1 3 … 10101 …

0 0 0 … 00000 …
1 1 3 … 10101 …
0 3 3 … 01100 …

13
1
0

2
1
1

10
1
1

Transposed input

1

2.1

2.2 2.3

3

4 Update and retire
Iteration 1

Iteration 2
<=

Inference

0, 5, 3, .. , 0, 1, 0, 3, 0, ..
0, 1, 3, .. , 1, 0, 1, 0, 1, ..
0, 3, 3, .. , 0, 1, 1, 0, 0, ..
0, 9, 0, .. , 0, 1, 0, 1, 0, ..
0, 2, 3, .. , 0, 0, 1, 2, 0, ..
0, 4, 3, .. , 0, 0, 0, 0, 1, ..

Trace

Functional
simulation

Dimension = 50

0

0 0 0 … 00000 …

0 0 0 … 00000 … 0 0 0 … 00000 …

Fig. 1: Instruction streams executing in SimNet. Red circle represents
the data copy steps. (better viewed in color)

13, 1, and 0. These latencies are updated for the respective
instructions in the instruction queue (4). For brevity, we only
show one latency per instruction. The latency of <add eax,
12> is updated to 13. The Clock is advanced by the sum of
the current Clock and fetch latency, i.e., {0}+{13}=13. Retire
clock for each instruction is the sum of all predicted latencies
and the current Clock, i.e., {13+1+0}+{0}=14.

Whenever the Clock value is greater or equal to the retire
clock, we remove the instruction from the instruction queue.
Iteration 2 shows an example of how an instruction retires.
The processor Clock in Iteration 2 is 15, and the retire
clock of <add eax, 12> is 14. As Clock is higher than
retire clock, <add eax, 12> retires from the instruction queue
and will not be considered as a part of the input for future
simulations of other instructions. The simulation continues
likewise until all instructions are simulated. After simulating
the final instruction, the processor Clock provides the total
execution cycle of all instructions.

0 100 200 300 400 500

Time (µs)

1

2

3

4

10

132

551

79

Fig. 2: Profile of a single iteration of sequential simulation.

The aforementioned stringent dependencies of an instruction
with its context instructions prevent ML-based simulators from
conducting parallel simulations. Figure 2 profiles the execution
time for each simulation step of SimNet on a DGX A100
system [28] with AMD EPYC 7742 64-core CPUs and A100
GPU. The simulation of a single instruction takes 772 µs. The
simulation throughput for this design is 0.0013 MIPS, which
is 153× slower than gem5, which achieves a throughput of
0.198 MIPS when evaluated on the same system.

It is evident that the inference takes 71% of the total
simulation time. The reason is that single inference has a
workload of only 3.19 million floating point operations, while
an A100 GPU has a maximum throughput of 19.5 trillion float-
ing point operations per second for FP32 computation [28].
This workload gap indicates that the sequential inference
is far from saturating the GPU computation capabilities. A
possible way to increase the inference workload is to have
multiple inferences performed in parallel, i.e., batched infer-
ence. Regrettably, the simulation’s sequential nature makes
parallel inference difficult. We also confirm that the simulation
workflow experiences high overhead due to redundant data
movements. For example, 70% of execution time is spent on
redundant data movement, excluding ML inference time.

IV. EFFICIENT EXTERNAL-GPU SIMULATION

This section details how we optimize the single instruction
simulation. We avoid the redundant data movement via GPU-
based input construction, sliding window-based instruction
queue, and transpose-free optimizations. Subsequently, we
optimize inference via a custom convolution layer and overlap
the simulation and data movement in a pipelined fashion.

A. Bandwidth-efficient Input Construction

GPU-based input construction. For an instruction, the
inference input used to predict its latency encompasses the
features of itself and those of the context instructions, i.e.,
instructions that enter the processor previously and remain
under execution at the moment. Clearly, context instructions
are already copied from CPU to GPU when we infer their
respective latencies. Copying the context instructions again to
the GPU (2.2) is redundant. To avoid this redundancy, we
directly offload the inference input construction onto GPUs.
While moving the instruction queue on to GPUs completely
removes the transfer of context instructions—that is, avoid-
ing copying Context length out of the Context length+1
instructions—we also need to perform updates to context
instructions. Because we pack various context instructions
together, updating the latency entry means updating the first
column of the input in Figure 1, which will experience
expensive strided global memory access. Correspondingly, we
allocate a dedicated latency vector in shared memory to resolve
this problem.

Sliding window-based instruction queue. It targets the
issue of copying instructions from the instruction queue to
the input (2.1 in Figure 1). The reason for maintaining an
instruction queue and input separately is to link the context
instructions together along with padding for inference.

We introduce a novel sliding window-based instruction
queue that can be directly used as input, avoiding this re-
dundant data copy. We allocate a contiguous memory block
for Context length+1 and additional N instructions (i.e.,
(Context length+1) + N) for the instruction queue, where
N represents the batch size. The queue can accommodate
N future instructions and a window of Context length+1
instructions slides in this queue to ensure that the current

instruction is always in the first position. In every iteration, we
slide the window by one instruction. The sliding window also
automatically adjusts the padding at the tail. Further, instead
of having a data copy for every instruction, this design also
amortizes the cost of data copy (1) by copying a batch of
N+1 instructions together to the instruction queue. During the
batched copy, to ensure the current instruction is always in the
first position in the queue, the instructions within the batch are
copied in a reversed order, i.e., the last instruction is in the
first index of the queue.

0 5 3…01030…I0

I1

I2
Shift

add eax, 12

add eax, 1 mov edx, eax

mov edx, eax add eax, 12 retires

0 0 0…00000…0 0 0…00000…

0 0 0…00000…0 0 0…00000…13 5 3…01030…0 1 3…10101…

1 1 3…10101… 0 0 0…00000…0 1 3…10101… 0 3 3…01100…

0 1 3…10101…

add eax, 12

Fig. 3: Sliding window-based instruction queue.

Figure 3 shows an example of how a sliding window-
based instruction queue works. Assuming N = 1 and the
length of the input is 3, each red box marks the infer-
ence input for the current iteration. First, the instructions
{0,5,3,..,0,1,0,3,0,..} and {0,1,3,..,1,0,1,0,1,..} are copied in
batch to the instruction queue in a reversed order, i.e., second
instruction {0,1,3,..,1,0,1,0,1,..} is stored in the first index of
the instruction queue’s memory. In the first iteration, the start
pointer is the rightmost three instructions, with the first one
as the {0,5,3,..,0,1,0,3,0,..} instruction and the remaining two
as zero padding. For the next iteration, we slide the red box
left by one instruction. Finally, we have reached the memory
limit, and all non-retired instructions are shifted to the initial
position. Of note, as {0,3,3,..,0,1,1,0,0,..} retires at the end of
the second iteration, we do not need to copy that instruction.
In this example, the cost of copying is amortized over three
iterations.

Avoiding transpose. Here, we address the final redundant
copy caused by the transpose of the input in Step (2.3). The
input is transposed for the convolution operator to align the
same features of different instructions. In fact, for each instruc-
tion inference, a transpose of Context length+1 instructions
is performed, which is the most expensive redundant copy.

To avoid transposing too many instructions at each infer-
ence, a naive idea would be to prepare the inputs directly
in the transposed format. However, this design cannot work
with our sliding window-based instruction queue, and Figure 4
illustrates the reason. In Figure 4(a), the convolution operation
multiplies a channel of dimension W×H, i.e., 3×2, with the
inputs by sliding a kernel from top to bottom. As this input
does not have a sliding window, the memory addresses of
consecutive rows will be continuous. When the extra spaces
are added in the sliding window as shown in Figure 4(b), the
red box marks the current input. Clearly, in such a design, the
consecutive rows of the red box become discontinuous due
to the future inputs. Markedly, the leftmost instruction {0, 1,
3, ..., 1, 0, 1, 0, 1, ...} has separated the continuous rows of
the three instructions in the red box. This fact implies that

changing the data structures alone will not help avoid this
redundant data movement.

0
5
3
…
0
1
0
3
0
…

0
1
3
…
1
0
1
0
1
…

0
0
0
…
0
0
0
0
0
…

0
0
0
…
0
0
0
0
0
…

0
5
3
…
0
1
0
3
0
…

0
0
0
…
0
0
0
0
0
…

0
0
0
…
0
0
0
0
0
…

(a) Conv on original
design

(b) Transposed sliding
window

Conv
channel
= 3 x 2

Continuous
memory
addressing

Sliding
window

Conv channel= 2 x 1

(c) Custom conv layer
over non-transposed input

0 1 3 … 1 0 1 0 1 …
0 5 3 … 0 1 0 3 0 …
0 0 0 … 0 0 0 0 0 …
0 0 0 … 0 0 0 0 0 …

Fig. 4: Convolution (Conv) on (a) original transposed input, (b)
transposed sliding window input, and (c) custom layer on non-
transposed input with sliding window.

Therefore, we propose to customize a convolution layer
that can perform convolution computation on non-transposed
inputs. Pointedly, we do not want to customize the entire
inference logic because NVIDIA TensorRT [29] offers state-
of-the-art inference performance. By adding a single custom
convolution layer for merely the first convolution, the follow-
up layers can still enjoy the benefits of TensorRT.

As our custom layer offers more benefits than avoiding
transpose in the subsequent designs, the details about custom
layer implementation and the integration with TensorRT are
featured in Section IV-B.

B. Inference Optimization and Pipeline

Once the redundant data movement is eliminated, inference
becomes the next bottleneck. Using the popular PyTorch
libtorch inference library as an example, inference takes 71%
of the simulation time in SimNet. We first discuss how we
improve the inference with model and system optimizations.
Then, we present our custom layer optimization followed by
pipelining the inference with data movements.

Inference optimization. For system optimization, we use
NVIDIA’s TensorRT [29] high-optimization inference library.
It performs various system optimizations, such as kernel
fusion, auto-kernel tuning, and dynamic memory allocation, as
well as providing for efficient use of Tensor Core. TensorRT
offers 2-3× speedup for inference over LibTorch. We adopt
NVIDIA half precision and 2:4 model pruning [30] support to
improve the inference speed further. For lower precision, we
use half precision as it is supported by recent GPU pipelines,
including Tensor Core. It reduces the number of bytes accessed
during inference and enables fast half-precision matrix multi-
plication. We also perform 2:4 sparsity-based pruning to more
thoroughly benefit from Tensor Core hardware. This technique
prunes two least values from four consecutive values. Tensor
Core can provide nearly 2× speedup for matrix multiplication
with 2:4 sparsity [30].

Custom convolution layer. We make an important obser-
vation that most computations on the first layer are performed
in the paddings, which can be avoided. In Figure 4(a), the con-
volution channel of dimension 3×2 is used only when the first
column would result in non-zero values. Therefore, our custom
layer is designed to replace the first layer of the original
model to perform convolution on non-transposed and strided

memory address matrix, as well as avoiding the padding
computations. Figure 4(c) shows how the custom convolution
layer avoids transposing, computes the padding, and supports
the sliding window optimization. Instead of transposing the
input, we transpose the convolution channel itself, i.e., W×H
→ H×W (3×2 → 2×3). Because the convolution channel
is small and transposing it is a one-time cost, the overhead is
negligible. Then, to avoid computing the paddings, the custom
convolution layer dynamically adjusts the dimensions of the
convolution channel to perform computation only over the
non-paddings. With TensorRT’s convolution layer implemen-
tation, the width of the convolution channel is always static,
i.e., 2×3 (after transpose), and cannot be dynamically adjusted.
The custom layer provides the flexibility to pass an extra
parameter to the convolution layer, which defines the count of
context instruction or non-padded columns (here, 1). In this
example, the convolution channel is dynamically adjusted to
2×1 from 2×3. Of note, the 3C+2F model in SimNet has 64
convolution channels in the first layer.

Pipelined simulation. Now, the only data movement is
copying a trace of N instructions from CPU to GPU. After-
ward, the CPU remains idle for N iterations of simulation. To
further reduce the simulation time, we overlap the batch data
copy of N instructions with the simulation of N instructions
on the GPU. We use two instruction queues, or double
buffering, to enable the pipeline. To properly hide the data
copy, the data movement time should be similar to or less
than the simulation time on the GPU. To balance the execution
time, we propose to tune the value of N , so the time to copy
a batch of N instruction is similar to the simulation time of
N instructions. The good news is that copying a batch of N
instruction takes more time than simulating it, while the data
copy time increases sublinearly with respect to the increase of
the instructions due to the throughput-oriented bandwidth of
CPU-GPU. Hence, we can find the sweet spot: the value of
N where the time to copy N instructions is equal or similar
to the simulation time of N instructions. A proper value of N
is studied in Section VI-B.

V. PARALLEL SIMULATION WITH ACCURACY RECOVERY

This section details efforts to achieve efficient distributed
ML-based simulation via a carefully designed parallel scheme
that balances simulation throughput and accuracy. In partic-
ular, we discuss the parallel simulation of a single program
(Section V-A), analysis of parallel simulation errors due to
dependency interruption, and recovery from the parallel simu-
lation errors (Section V-B). The proposed parallel simulation
scheme efficiently exploits GPU computation resources, en-
abling significant simulation throughput improvements.

A. Parallel and Multi-GPU Simulation

Simulation can be simply performed in parallel to simulate
multiple benchmarks. However, parallel simulation of a sin-
gle benchmark is not straightforward. To extract parallelism,
SimNet proposes to partition the entire instruction trace into
multiple, disjoint sub-traces then simulate all sub-traces in

add eax, 12
mov edx, eax
add eax, 1
jle 54
sub edx, eax
mov eax, rax

add eax, 12
mov edx, eax
Sub-trace0

add eax, 1
jle 54
Sub-trace1

mov edx, eax
I0
I1

Lost contexts
sub edx, eax
mov eax, rax
Sub-trace2

add eax,1
jle 54

Fig. 5: Parallel simulation with two sub-traces.

parallel and independently. Notably, the instructions within
each sub-trace are simulated in a sequential order to preserve
the instruction dependency within the specific sub-trace. As a
result, the context instructions for the first few instructions
in each sub-trace will be lost and can result in inaccurate
predictions. The impact on accuracy is studied in Section V-B.

After partitioning the trace, we can perform inference for
#sub-traces number of instructions simultaneously. Figure 5
shows an example of how the six-instruction trace is par-
titioned into three sub-traces with two instructions in each
partition. After partitioning, we can infer the i-th instruction of
all sub-traces together. The first instruction of sub-trace1 and
sub-trace2 will not have any required context instructions as it
is the first instruction to be simulated from those sub-traces. If
the instructions are simulated sequentially, the first instructions
from sub-trace1 and sub-trace2 would have {<mov edx,
eax>} and {<add eax, 1>, <jle 54>} as their context
instructions. Now, one and two context instructions are lost
for sub-trace1 and sub-trace2, respectively.

It is important to mention that this design enables embar-
rassingly parallel simulations in distributed settings. During
simulation, no inter-GPU communication is required. Commu-
nication is done once after completing the simulation to gather
the Clock from each sub-trace. Based on how we handle
the simulation error resulting from partitioning the trace, we
will experience only very light communication or workload
imbalance challenges. The impacts of different numbers of
sub-traces and GPUs are examined in Section VI-B.

B. Parallel Simulation Error and Recovery

bl
en

bs
sn

ca
m

4
de

ep
ex

ch fo
to

im
aglb

m
m

cf
na

b
ro

m
s
sp

ef
sp

ei wrf
x2

64
xa

la xz

10
20
30
40

S
im

u
la

ti
on

er
ro

r
(%

) 32k 64k 96k 128k

Fig. 6: Parallel simulation errors for 10M instructions of all bench-
marks with 32k, 64k, 96k, and 128k sub-traces incurred by SimNet.

Error study. Figure 6 shows the parallel simulation
error incurred by SimNet for all 17 benchmarks used
in our evaluation. The simulation error is calculated as
(
CPIsequential−CPIparallel

CPIsequential
× 100%) where CPI corresponds to

Clock
Total instructions . The general trend across all benchmarks is
that simulation error increases with the number of sub-traces.
Specifically, the simulation error can go as high as 40% with
128k sub-traces for benchmark exch. Even the lowest error is
22% for benchmark x264. This result projects that the rapidly
increased simulation errors will limit the scalability of our
parallel simulation.

−50
0

50
D

iff
er

en
ce

(a) Context difference

0 5000 10000 15000 20000 25000

Instructions

−25
0

25

D
iff

er
en

ce

(b) Prediction difference

Fig. 7: Instruction-wise context difference (a) and prediction differ-
ence (b) for 25k instructions with four sub-traces.

The root cause of the simulation error is either the loss
of context instructions or inaccurate latency of the required
context instructions or both. Because the first few instructions
of the sub-trace experience these issues more severely, the
majority of the simulation errors appear then. Figure 7 exam-
ines the root cause via partitioning the 25k instructions in the
xz benchmark into four sub-traces. The black dotted vertical
lines represent the partition boundary, and the blue lines plot
the differences. Notably, whenever there is a difference in
the context instructions in Figure 7(a), the predicted cycles in
Figure 7(b) differ for some number of consecutive instructions
in each sub-trace. Moreover, even after we simulate the
Context length number of instructions that should gather
sufficient context instructions, the error still exists. This is
caused by the fact that the latency of the context instruction is
not as expected. Overall, once the simulation proceeds through
an instruction with minimal context, the prediction error starts
trending down.

Warmup. To reduce the parallel simulation error, our
warmup strategy aims to compensate for the missing context
instructions for the first few instructions in each partition. As
such, our warmup step simulates W instructions before each
partition to offer the required context instructions. As the max-
imum number of context instructions for a to-be-predicted in-
struction is Context length, we keep W= Context length.
Our warmup approach is inspired by the warmup simulation
in traditional cycle-accurate simulations [31], [3], [5]. Particu-
larly in traditional simulators, warmup initializes the hardware
component states. For components such as cache memory and
branch predictor, a lengthy warmup of millions to billions of
instructions is required to get their accurate states.

The goal and design of our warmup instructions differ from
those of traditional simulators. Goal: we need prior instruc-
tions to fill up the context instruction space for the inference
input. Although we still call those context instructions as
warmup instructions, they are not used to warm up the hard-
ware components from the simulators. Design: as the number
of context instructions is determined, before simulation, we
can add a set number of instructions at the beginning of
each partition to fill the context instruction space. This design
avoids inter-partition communications. In contrast, traditional
simulators would require many warmup instructions, which, if
used, will involve inter-partition communications.

Despite the warmup design’s simplicity, this approach turns
out to be quite effective at reducing the overall prediction error.
Figures 8(a) and (c) show the difference in the number of con-

text instructions and predictions. We use the cumulative sum
of the prediction differences in Figure 8(c), which corresponds
to the overall simulation error. As the figure shows, warmup
reduces the differences in context, as well as the prediction
difference. With the warmup of Context length instructions,
the simulation error is reduced from 10% to 3%. Figure 8(b)
also shows the context difference for the third partition with
and without warmup. As the figure illustrates, although the
context difference is zero for a few earlier instructions, it
differs for the instructions that follow. Hence, warmup may
still fail to recover the errors even if the context is correct.

Post-error correction. Warmup alone fails to fully recover
the error for the first few instructions as it may not get the
correct latency for context instructions. Performing a longer
warmup is not a viable option because the required warmup
length varies with partition to get the correct context, and there
is no way to discern it before starting the simulation. Along
with incorrect latency, we would construct the wrong inputs
for the inference. Additionally, as the latency of instruction
affects when a context instruction retires, such a difference
can also impact the number of context instructions.

We propose to re-simulate the first few instructions after the
preceding sub-trace completes its simulation as they can offer
more accurate heuristic context instructions for the earlier in-
structions of the sub-trace. This post-error correction approach
differs from the warmup design as the former re-simulates the
first few instructions after completing the entire simulation.
The number of required corrections varies for each partition.
As the prediction difference vanishes after a minimum context,
the correction is performed until the number of context instruc-
tions is zero or within a maximum limit during the simulation.
This is because there is a high probability of fully recovering
the context for following instructions when the number of
context instructions is minimal. For instance, with only one
context instruction, it is easier to match the latency of that
context instruction, and there will not be follow-up side effects.
Of note, the correction may not always completely recover
the error if there is no instruction with the minimum context
in the preceding partition. Yet, post-error correction can still
reduce the error when compared to warmup as it may provide
more accurate contexts. Warmup is still used with correction
to reduce the error for instructions beyond the correction limit.

Figure 9 shows how post-error correction works when 20
instructions are partitioned into four sub-traces and simulated
on two GPUs. Initially, all instructions in each partition are
sequentially simulated. Then, if this partition is not the last
one on the GPU, it will re-simulate the following instructions,
which were previously simulated by the next partition. As
shown in Figure 9, partitions 0 and 2 re-simulate {I4, I5}
and {I15, I16, I17} from partitions 1 and 3, respectively. The
re-simulated cycles will replace the previously simulated ones.

Our post-error correction includes two key design choices to
maintain efficiency, accuracy, and scalability. First, for the re-
simulation termination criterion, our re-simulation continues
until either the number of context instructions of the re-

0 5000 10000 15000 20000 25000
−50

0

50
C

on
te

x
t

d
iff

er
en

ce

Parallel Warmup Warmup with correction

(a) Context difference for parallel, warmup and warmup with correction.
0 200 400 600 800 1000

0

25

C
on

te
x
t

d
iff

er
en

ce

Parallel Warmup Warmup with correction

(b) Context difference for third partition.

0 5000 10000 15000 20000 25000
Instructions

0

250

P
re

d
ic

ti
on

d
iff

er
en

ce

(c) Cumulative sum of prediction difference.

0 200 400 600 800 1000
Instructions

0

25

P
re

d
ic

ti
on

d
iff

er
en

ce

(d) Prediction difference for third partition.

Fig. 8: Warmup versus warmup with a correction to recover the parallel simulation error. Of note, (a) and (c), respectively, show the context
and prediction differences for 25k instructions across four partitions. (b) and (d) zoom into the third partition for detailed analysis. Respective
simulation errors are 10%, 3%, and 0.1% for baseline, warmup, and warmup with correction.

2 7 5 1 1
0 1 2 0 1

Partition 0

I0 I1 I2 I3 I4
2 7 5 1 1
0 1 2 0 1

4 9
2 1

5 1 6
1 2 2

5 8 3 1 2
0 1 2 0 1

7 3 3 1 7
0 1 2 1 2

Partition 1 Partition 3

I5 I6 I7 I8 I9
4 9 3 1 2
2 1 2 0 1

I15 I16 I17 I18 I19
5 1 6 1 7
1 2 2 1 2

True latency
of context
instructions

I10 I11 I12 I13 I14
3 1 2 4 2
1 2 2 3 2

5 2 2 4 2
0 1 2 3 2

Partition 2

GPU 0 GPU 1

No
correction

for 0-
comm ❌

Fig. 9: Post-error correction for multi-GPU simulation.

simulation matches the prior outcomes or a user-defined re-
simulation limit. The termination instructions are instructions
I6 and I17, whose number of contexts in the first and re-
simulation match. Second, we do not perform post-error
correction for the first partition of each GPU because the
re-simulation termination criterion requires sending the cor-
rect number of context instructions of the first partition to
the preceding GPUs. Because each GPU can simulate 32k
partitions in a batch, not correcting the first partition among
32k partitions results in a negligible non-corrected rate of

1
32,768 . Considering this design helps maintains zero inter-GPU
communications during the simulation, we opt for this choice.

Figure 8(c) shows the reduction in the prediction difference
when correction is applied after warmup. The correction
required for each partition is different because it is performed
until we encounter the minimum context. The red dotted
lines represent the instructions until a correction is made.
For the second and third partitions, the prediction difference
is completely eliminated. For the fourth partition, we do
not encounter minimum context until the limit. Hence, the
following instructions still have some errors, but less than
the warmup-only solution. Figures 8(b) and (d) show that the
context instruction and prediction differences are completely
eliminated for the third partition. Warmup with correction
reduced the error from 3% using only warmup to 0.1%.

VI. EVALUATION

We evaluate our work on a NVIDIA DGX A100 system
with eight A100 GPUs (40 GB) and AMD EPYC 7742
64-core CPU. Both gem5 and SimNet are evaluated in the

same system. This simulator is implemented in C++/CUDA
and compiled with gcc 9.3.0 and the CUDA Toolkit 11.4.
For inference, we use TensorRT 8.0. For the scalability test,
we use the Summit supercomputer at Oak Ridge National
Laboratory [32]. Each Summit node has six NVIDIA V100
GPUs (16 GB), dual-socket 22-core POWER9 CPUs, and
512 GB of memory. To compare with state-of-the-art parallel
simulators, we also evaluate ZSim. ZSim can only simulate
selective x86 microarchitectures, while gem5, SimNet, and
this simulator simulate ARMv8. Because ZSim requires some
tools that support up to gcc 4.8.4 and Ubuntu 14.04, we cannot
directly run it on the DGX A100 system. Instead, we set up
the ZSim environment on a dual-socket 16-core Intel Xeon E5-
2637 server with 128 GB memory. For fair comparison, we
also run gem5 on this server, and project ZSim’s performance
on the DGX A100 server based on the performance of gem5
on both systems.

We use MIPS to measure the simulation throughput. For
all experiments except the scalability test, we use the first
100 million instructions from each benchmark. To saturate all
GPUs, the scalability test runs up to 100 billion instructions
from each benchmark. The reported simulation error is bench-
marked against the gem5 simulator.

bl
en

bs
sn

ca
m

4
de

ep
ex

ch fo
to

im
aglb

m
m

cf
na

b
ro

m
s
sp

ef
sp

ei wrf
x2

64
xa

la xz

0.001
0.01
0.1

1
10

100
1000

T
h

ro
u

gh
p

u
t

(M
IP

S
,

lo
gs

ca
le

)

gem5
SimNet

ZSim
Ours (64-core CPU)

Ours (1 GPU)
Ours (282 GPU)

Fig. 10: Our approach versus the state-of-the-art simulators.

A. Comparison with State-of-the-Art

Figure 10 compares our work with state-of-the-art, including
gem5, ZSim, Ithemal, and sequential SimNet. Notably, the
original SimNet manuscript [16] presents the performance of
parallel SimNet on 1 GPU or 8 GPUs (Figure 9 in [16]). How-
ever, as shown in Figure 6, SimNet on 1 GPU experiences up

to 16% accuracy loss (1 GPU requires 32K trace partitions)—
let alone the 8 GPU version. Therefore, neither 1 nor 8 GPU
SimNet is regarded as accurate. Consequently, we report the
performance of sequential SimNet, which is accurate.

Our work achieves 2.86 and 2.45 MIPS throughput on one
A100 and V100 GPU, respectively. Of note, parallel CPU
implementation on DGX A100 with a 64-core AMD EPYC
7742 CPU achieves a throughput of 0.0033 MIPS. When
scaled to 282 V100 GPUs of 47 Summit nodes, we achieve
an average throughput of 553.68 MIPS. We use 10 billion
instructions for this scalability test. A detailed scalability study
is included in Section VI-C. gem5, the traditional state-of-
the-art simulator, achieves a throughput of 0.198 MIPS. ML-
based architectural simulators, Ithemal and SimNet, achieve an
average throughput of 0.00057 and 0.0013 MIPS, respectively.
Although both can resort to hardware acceleration, they are
significantly slower than gem5 as they cannot scale to many
GPUs while maintaining the desired accuracy. We also point
out that ZSim achieves an average throughput as high as 16.45
MIPS. It is important to note that the ZSim’s parallelism is
limited to the number of simulated cores. Hence, unlike this
simulator, ZSim cannot further scale its performance.

For functional simulation overhead and hardware valida-
tion, the instruction set emulators, e.g., QEMU-KVM [33],
[27], are used to generate the functional trace, which achieves
a throughput of 1290 MIPS. This is much faster than the
throughput of the ML-based simulator. Therefore, we negate
the overhead to generate the functional traces. The gem5 sim-
ulation of the A64FX architecture configuration is verified to
have an average absolute error of 6.6% [34]. When evaluated
against the gem5 A64FX model, the ML-based version has
an average absolute error of 6.0% [16]. This result shows that
our work can provide similar accuracy as gem5.

B. Data Movement Optimizations Study

0

1

2

T
im

e
(µ

s)

5.8

0.33 0.1 0.01
1 2 3 4

CPU GPU

Fig. 11: GPU-based input construction.

GPU-based input construction. Figure 11 compares the
performance of CPU- and GPU-based input construction.
Input construction and data transfer take 4 µs and 1.8 µs,
respectively, and 5.8 µs in total. Data transfer is reduced from
4 to 0.04 µs as we only need to transfer one instruction instead
of the whole input from CPU to GPU. Thanks to the massive
parallelism of GPUs, the input construction time (2) further
reduces from 1.84 µs to 0.33 µs per instruction. Also, update
and retire (4) time reduces from 0.1 µs to 0.01 µs per
instruction. Overall, GPU-based input construction provides
4.5× speedup in simulation.

Sliding window-based instruction queue. The sliding
window-based instruction queue reduces the input construction
time by avoiding the concatenated copy from the instruction
queue to the input. Figure 12 shows that the input construc-
tion time decreases along with the increase in N . For our

2 4 6 8 10 12 14
N

0.2

0.3

T
im

e
(µ

s)

Fig. 12: Average input construction time with increasing N .

experiments, we use N=10 because increasing N will increase
the memory consumption, resulting in negligible performance
improvement. This optimization reduces the input construction
time from 0.33 µs to 0.21 µs per instruction—a 36% reduction
in input construction time.

0.0 0.2 0.4 0.6 0.8 1.0

Inference time (µs)

2:4 sparsity
Half-precision

TensorRT
Before

Fig. 13: Inference improvement.

Inference optimization. Figure 13 plots the inference time
improvements with respect to each optimization. Using Ten-
sorRT, the inference time reduces from 1 µs to 0.34 µs per
instruction. Furthermore, with half-precision and 2:4 sparsity
pruning, the inference time is reduced to 0.26 µs and 0.22 µs
per instruction. Combined, the inference time is improved by
4.6× with negligible accuracy loss.

bl
en

bs
sn

ca
m

4
de

ep
ex

ch fo
to

im
aglb

m
m

cf
na

b
ro

m
s
sp

ef
sp

ei wrf
x2

64
xa

la xz
0

50

100

C
on

te
x
t

in
st

ru
ct

io
n

s

Fig. 14: Average, maximum, and minimum # of context instructions.

Custom convolution layer. Figure 14 shows the average
and maximum numbers of context instructions in each bench-
mark. On average, more than 68% of the instructions are
paddings. By avoiding transposing through a custom convo-
lution layer, the input construction time further reduces from
0.23 µs and 0.1 µs per instruction. During simulation, avoiding
computation for the paddings reduces the inference time from
0.22 µs to 0.18 µs per instruction.

Pipelined simulation. Figure 15 presents the time consump-
tion of copying a batch of instructions versus the simulation
of these instructions with respect to increased batch size. In
particular, for a single instruction, copy takes 0.45 µs, while
simulation takes 0.3 µs. Because copy uses NVLink, which is a
throughput-oriented interface, the time consumption increases
slower than computing the same number of instructions. We
find the sweet spot (i.e., when copying and simulation take
similar time) is N = 3. Note that the sliding window size and
batch size are related parameters. Because the optimal sliding
window size is 10 instructions, as shown in Figure 12, we
keep N = 10 as the optimal batch size.

Figure 16 gleans the overall effectiveness of data move-
ment optimizations. Collectively, GPU-based input construc-
tion (GIC), sliding window-based instruction queue (SWIQ),

2 4 6 8 10 12

Batch size (number of instructions)

1

2

3
T

im
e

(µ
s) Copy Simulation

Fig. 15: Execution time for instructions.

custom convolution layer (CC), optimized inference (OI),
and pipelined simulation (PS). With all optimizations, the
simulation throughput increases from 0.133 MIPS to 2.86
MIPS, which is 21.5× speedup on average.

Base GIC SWIQ OI CC PS
Optimizations

0

2

4

T
h

ro
u

gh
p

u
t

(M
IP

S
)

Fig. 16: Simulation with proposed optimizations.

C. Scalability Study

Figure 17 shows the strong and weak scaling of our
approach on the Summit supercomputer. In strong scaling
(Figure 17(a)), simulation speed climbs by 5.43×, 10.28×,
19.96×, 40.59×, 79.45×, 160.09×, and 225.89× when scaling
from 1 to 6, 12, 24, 48, 96, 192, and 282 GPUs. This shows
that the proposed simulator can achieve near linear scalability
with an increasing number of GPUs. We cannot achieve exact
linear scalability because different partitions could perform
post-error correction for a dissimilar number of instructions,
leading to slightly different workloads across GPUs.

50 150 250

#GPUs

50

150

250

S
p

ee
d

u
p

Linear

1B 10B 100B

Instructions (billions)

400

500

600

T
h

ro
u

gh
p

u
t

(M
IP

S
)

xz
mcf

lbm
wrf

nab
roms

spef
bssn

deep
imag

xala
x264

blen
cam4

exch
foto

spei

Fig. 17: Scalability study for (a) strong scaling of 10 billion instruc-
tions per benchmark and (b) weak scaling of 282 V100 GPUs.

In weak scaling (Figure 17(b)), we use 282 GPUs. When
the number of instructions grows from 1 to 100 billion,
simulation throughput increases accordingly. The reason is that
when more instructions are simulated, the ratio of re-simulated
instructions in post-error correction drops, which decreases the
ratio of redundant workloads. Note, we cannot use 100 million
instructions for the scalability test because it leads to very low
workloads per partition, i.e., ∼10, when scaling to 282 GPUs.

Parallel simulation error. Figure 18 shows the reduction
in parallel simulation error for 100 million instructions par-
titioned into 8 GPUs with 32k sub-traces in each GPU. The
length of the warmup and the maximum threshold for error
correction are kept Context length and 100 instructions,
respectively. To make sure the simulator has comparable

accuracy as a cycle-accurate simulator, the simulation error is
evaluated against gem5. As Figure 18 illustrates, both warmup
and warmup with post-error correction effectively reduce the
simulation error for all benchmarks. With warmup, the average
error is reduced from 16% to 3.4%. When additional correction
is performed, the simulation error is further reduced to 2.3%.
As the figure demonstrates, the ML-based simulator can attain
high accuracy comparable to gem5.

bl
en

bs
sn

ca
m

4
de

ep
ex

ch fo
to

im
aglb

m
m

cf
na

b
ro

m
s
sp

ef
sp

ei wrf
x2

64
xa

la xz
0

20

40

E
rr

or
(%

) Baseline Warmup Warmup with correction

Fig. 18: Improvement in parallel simulation error. Simulation error
is benchmarked against gem5.

D. Prediction Error for Different Instructions

Table III studies the prediction error of different types of
instructions. Particularly, memory instructions include memory
read and write instructions, and the arithmetic and logic unit
(ALU) operations include all arithmetic and logical operations,
such as add, subtract, multiply, shift, and divide instructions.
The data is collected across all the benchmarks. As Table III
shows, memory instructions have a slightly higher prediction
error compared with ALU instructions, i.e., 1.175% versus
2.96%. Of note, memory instructions are potentially subject
to more prediction errors because they are influenced by more
complex hardware components, such as caches, queues, and
other memory components.

Operation type Prediction error (%)
ALU instructions 1.175

Memory instructions 2.96

TABLE III: Prediction error for different types of instructions.

E. Predicting Other Simulation Metrics

The proposed simulator can tackle various architectural
metrics, e.g., CPI, cache miss rates, branch misprediction rates,
and memory bandwidth. Here, we discuss how the simulator
collects the memory bandwidth and CPI metrics.

For the memory bandwidth, we derive it based on the
predicted latency and the total amount of data that is accessed
from memory. The latter item is derived in two steps. First,
we record the load and store instructions from the instruction
queue. Second, for each load/store instruction, the input trace
further offers the information about where a particular data
is accessed (i.e., ‘0’ for L0 cache, ‘1’ for L1 cache and ‘2’
for memory). Only the accesses from memory are accounted.
Then the the memory bandwidth is the ratio of the amount of
data accessed from memory and the latency. For computing
the CPI, the simulator tracks the instruction retire events in the
instruction queue at a certain interval. Note that computing CPI
for an interval is important to capture the variability and phase
behavior during the execution. While other instructions retire
in order, store instructions do not. We tracked store instructions
separately to get the correct count. The CPI is then computed

as the ratio of the collective predicted instruction latency over
the number of retired instructions for an interval.

bl
en

bs
sn

ca
m

4
de

ep
ex

ch fo
to

im
aglb

m
m

cf
na

b
ro

m
s
sp

ef
sp

ei wrf
x2

64
xa

la xz

0.01

0.1

1

G
B

/s
ec

(l
og

sc
al

e) gem5 Ours

Fig. 19: Memory bandwidth for different benchmarks.

bl
en

bs
sn

ca
m

4
de

ep
ex

ch fo
to

im
aglb

m
m

cf
na

b
ro

m
s
sp

ef
sp

ei wrf
x2

64
xa

la xz
0

1

2

C
P

I

gem5 Ours

Fig. 20: CPI for different benchmarks.

Figures 19 and 20 show the memory bandwidth and CPI
for all benchmarks collected from the ML-based simulator for
the default architecture. Quantitatively, for most benchmarks,
the predicted CPI and memory bandwidth are close to the
simulated results of gem5 and show similar trends.

F. Use for Design Space Exploration

Table IV lists various microarchitecture parameters that do
not require any retraining. Particularly, any variation in the
listed parameters will directly impact the branch predictions
(correct/incorrect) and/or memory access locations (L1 cache,
L2 cache or memory). Thus, such changes will lead us to
generate a new input trace. Note that generating a trace with
functional simulation is significantly faster than retraining or
parallel simulation i.e., 1290 MIPS. Subsequently, we can use
the same trained model for simulations.

Hardware Components Designs

Branch Predictor algorithm, branch history table size,
branch target buffer size

Memory Management Unit Size, associativity
L1 ICache Size, replacement policy, associativity
L1 DCache Size, replacement policy, associativity
L2 Cache Size, replacement policy, associativity

TABLE IV: List of parameters that do not require retraining.

Figure 21 shows one scenario for how simulation parameters
can be changed without retraining. Specifically, we seek to de-
termine the best L2 cache size for an architecture configuration
shown in Table II using wrf as a test benchmark and CPI as
a metric. Compared to gem5, the simulator shows similar CPI
trends. In this point-wise analysis, when the L2 cache size is
in a range from 256KB to 4MB, a significant performance
improvement is observed for a cache size up to 1 MB, which
is the optimal size in this case. Just like for the case of using
traditional simulators, this conclusion is obtained in the context
of all the relevant architectural features that contribute to this
quantitative conclusion.

For changes to other microarchitecture parameters, retrain-
ing is required. Training data can be generated using a cycle-
accurate simulator for the configurations of interest. If the
number of instructions to be simulated is large enough, as with

256K 512K 1M 2M 4M
L2 cache size

1.25

1.50

C
P

I

gem5 Ours

Fig. 21: L2 cache size design exploration.

design space exploration using realistic application workloads,
the retraining overhead would be negligible. More details on
training overhead can be found in [16].

VII. DISCUSSION

A. Why ML-based Microarchitecture Simulation Works

Computer architecture performance prediction is a nonlin-
ear, multi-parameter, highly complex optimization problem.
An added difficulty is that the system performance is dynamic
in nature, meaning that important aspects of the applica-
tion workload and utilization of system resources cannot
be described a priori in a static fashion. As an alternative
methodology, analytical models use a collection of equations
that serve as parameterized functions to model hardware
performance [35] (also refer to equations 10-24 from [35]).
Apparently, the discriminative nature of each aforementioned
equations can be well captured by properly designed neural
networks, which excel at approximating linear or nonlinear
relationships [36].

While the analytical model cannot capture the dynamic
behavior of programs, the ML-based approach can learn
to capture the nonlinear and dynamic relationships between
instructions based on the instruction property, context instruc-
tions, and actual latency of that instruction. In addition to
this intuition, ML-based modeling is much easier than ana-
lytical modeling as designing an analytical model is “crafty”,
time-consuming, requires tremendous domain knowledge and
experiments to gather the parameters, and is applicable to a
narrow spectrum of application-architecture pairings.

B. Generalizing the Optimizations to Ithemal

1
4
1
0

9
4
0
0

Token
layer

Instr.
layer

Prediction
layer

Block
throughput
prediction

1
4
1
0

9
4
0
0

Copy to
GPU

Paddings
Basic block

mov ecx, 0x02
add ebx, ecx 1

2 3

4

6
Tokens

1
4
1

9
4

0

Paddings

Linear
Linear

LSTM
LSTM

LSTM

Linear

Copy to
GPU

GPU
Concate.
operation

Block
layer

5

Padding
operation

Fig. 22: Generalizing optimizations to offload Ithemal on GPUs.

Figure 22 shows how our proposed technical designs can
be generalized to Ithemal [15]. When offloading Ithemal
on GPUs, we observe similar redundant communication and
parallel simulation challenges. Specifically, both Ithemal and
SimNet use the information of instructions as input. The
difference is while SimNet uses CNNs and tracks context
instructions explicitly, Ithemal uses hierarchical and sequential
LSTMs as a model to derive the dependency between instruc-
tions implicitly.

For latency prediction of a basic block, Ithemal hierarchi-
cally generates embeddings for each token, instruction, and
the entire basic block sequentially. First, the tokens for each
instruction are padded (0) and copied to GPU (1). The
token layer then generates instruction embeddings (2). The
instruction layer then uses an LSTM model to generate an
instruction embedding sequentially from the token embeddings
(3). Then, the instruction embeddings are concatenated (4) to
eventually generate the block embedding (5). Finally, Ithemal
uses a linear layer to predict the block throughput (6).

Although Ithemal does not require an instruction queue, it
still faces redundant data movement due to the hierarchical
embedding construction nature (4). Furthermore, because dif-
ferent instructions are of various lengths, padding is required
to use the TensorRT inference engine (0). Finally, the current
Ithemal design provides limited parallelism. Therefore, the
Ithemal workflow can benefit from the optimizations for Sim-
Net (i.e., data movement reduction) and parallel simulation.

To avoid redundant data movement due to concatenation
(4), a custom LSTM layer can be implemented (3) that
writes the required output of the instruction layer in different
memory locations so it may be used directly as input for
the following hierarchy. Similarly, a sliding window can be
used to batch more than one instruction at a time and transfer
them to GPUs for better memory bandwidth utilization (1).
To avoid padding computation (0), a custom token layer
can be implemented (2). Finally, other optimizations such
as TensorRT inference, half-precision, or pruning also may be
used to accelerate inference, as well as pipelining the inference
with host/device data transfers.

For parallel simulation, the original Ithemal uses basic-
block-based thread parallelism, where each CPU thread works
on a basic block independently. Yet, because the model is
hierarchical and composed of different layers with the in-
struction and prediction layers being sequential, it imposes
stringent data dependencies and cannot be efficiently paral-
lelized in GPUs. However, analogous to SimNet, instructions
from different basic blocks can be batched together for parallel
inference. In this direction, we first parallelize the instruction
embeddings at the token level across all instructions in the
same basic block. Subsequently, the inference computation can
be performed for various instructions across different basic
blocks in a batched manner. This parallelism can be applied
to both training and inference.

VIII. RELATED WORK

Traditional simulator. Traditional computer architecture
simulators simulate every component of the hardware. gem5
is one of the most popular simulators and supports a range
of instruction set architectures (ISAs) and microarchitectures.
ZSim is an x86 simulator that parallelizes many-core system
simulation [9]. It decouples the simulation of individual cores
with shared resources and adopts a simplified core model but
has limited parallelism. FireSim [37] is a field programmable
gate array (FPGA) emulator that runs significantly faster than
software simulators but requires considerable effort to develop

and validate register-transfer level models. In comparison, this
work accelerates ML-based simulation on the most widely
available ML accelerators, i.e., GPUs.

Simulation workload reduction. Simulation can also be
accelerated by sampling representative instructions from the
whole program. The primary goal is to process or simulate
a smaller instruction trace by reducing the size of the in-
put sets. MinneSpec [38] achieves this goal by generating
a representative smaller dataset from a large one based on
statistical characteristics (instruction mix, memory behavior,
etc.). Similarly, Conte et al. [39] use a state-reduction method
to sample the simulation traces statically. SimPoint [2] is a
popular statistical method that uses a clustering technique
to find representative instructions that can be simulated and
statistically represent the performance of a whole program.
SMARTS [3] is another simulation reduction method that
samples fixed instructions at regular intervals to represent a
program’s performance. Instead of using clustering technique,
SMARTS applies sampling theory to reduce the simulation
traces. The simulation detailed herein can be orthogonally
integrated with these techniques.

ML-based simulation and modeling. Ithemal and Sim-
Net propose using deep neural networks for instruction-wise
performance prediction [40]. Meanwhile, other works utilize
ML for performance and power prediction without performing
instruction-wise prediction. Specifically, [41], [42] formulates
nonlinear regression models as a statistical inference tool to
predict performance for aid in design space exploration. [43]
uses performance counters as the input of an ML model and
measurements from real hardware to predict GPU performance
and power. Some approaches predict both performance and
power based on those obtained on different types of proces-
sors [44], [45], [46] or ISAs [47], [48].

IX. CONCLUSION

This work addresses ML-based microarchitecture simulation
from the perspective of its optimization, scalability, and practi-
cality for actual use. We propose optimizations and paralleliza-
tion techniques and offer a thorough performance evaluation
of their impacts on the design and GPU implementation of
efficient ML-based simulators. The optimizations proposed
significantly reduce the time-to-solution of computer archi-
tecture simulation compared to discrete-event simulation with
the same level of accuracy. These approaches are applicable
and general to all ML-based simulators.

X. ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful sugges-
tions and feedback. This work was supported in part by the
Brookhaven National Laboratory through the SMaSH (Smart
Modeling and Simulation for High Performance Computing)
Project. Brookhaven National Laboratory is managed by the
U.S. Department of Energy’s Office of Science under Contract
No. DE-SC0012704.

REFERENCES

[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, and et al. The gem5 Simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, August 2011.

[2] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sher-
wood, and Brad Calder. Using SimPoint for Accurate and Efficient
Simulation. SIGMETRICS Perform. Eval. Rev., 31(1):318–319, June
2003.

[3] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. SMARTS: Accelerating Microarchitecture Simulation via Rigorous
Statistical Sampling. In Proceedings of the 30th Annual International
Symposium on Computer Architecture (ISCA), page 84–97, 2003.

[4] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. SPEC
CPU2017: Next-generation Compute Benchmark. In Companion of
the ACM/SPEC International Conference on Performance Engineering
(ICPE), pages 41–42, 2018.

[5] Andreas Sandberg, Nikos Nikoleris, Trevor E Carlson, Erik Hagersten,
Stefanos Kaxiras, and David Black-Schaffer. Full Speed Ahead: Detailed
Architectural Simulation at Near-native Speed. In IEEE International
Symposium on Workload Characterization (ISWC), pages 183–192,
2015.

[6] Aamer Jaleel, Robert S Cohn, Chi-Keung Luk, and Bruce Jacob.
CMP$im: A Pin-based On-the-fly Multi-core Cache Simulator. In
Proceedings of the Fourth Annual Workshop on Modeling, Benchmarking
and Simulation (MoBS), co-located with ISCA, pages 28–36, 2008.

[7] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSS: A Full System
Simulator for Multicore x86 CPUs. In 48th ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1050–1055, 2011.

[8] Curtis L Janssen, Helgi Adalsteinsson, Scott Cranford, Joseph P Kenny,
Ali Pinar, David A Evensky, and Jackson Mayo. A Simulator for
Large-scale Parallel Computer Architectures. International Journal of
Distributed Systems and Technologies (IJDST), 1(2):57–73, 2010.

[9] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-core Systems. SIGARCH
Comput. Archit. News, 41(3):475–486, June 2013.

[10] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically Characterizing Large Scale Program Behavior. In ACM
Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
page 45–57, 2002.

[11] Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James
Martin, Michael Mozer, and Benjamin Zorn. Evidence-based Static
Branch Prediction using Machine Learning. ACM Transactions on
Programming Languages and Systems (TOPLAS), 19(1):188–222, 1997.

[12] Daniel A Jiménez and Calvin Lin. Dynamic Branch Prediction with
Perceptrons. In IEEE Seventh International Symposium on High-
Performance Computer Architecture (HPCA), pages 197–206, 2001.

[13] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A
Machine-Learning Supercomputer. In 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 609–622, 2014.

[14] Wongyu Shin, Jeongmin Yang, Jungwhan Choi, and Lee-Sup Kim.
NUAT: A Non-uniform Access Time Memory Controller. In 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pages 464–475, 2014.

[15] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin.
Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation
Using Deep Neural Networks. In International Conference on Machine
Learning (ICML), pages 4505–4515, 2019.

[16] Lingda Li, Santosh Pandey, Thomas Flynn, Hang Liu, Noel Wheeler,
and Adolfy Hoisie. SimNet: Computer Architecture Simulation using
Machine Learning. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 2022.

[17] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An Infrastruc-
ture for Computer System Modeling. Computer, 35(2):59–67, 2002.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
Classification with Deep Convolutional Neural Networks. Advances in
neural information processing systems (NIPS), 25:1097–1105, 2012.

[19] John D. Owens, Mike Houston, David Luebke, Simon Green, John E.
Stone, and James C. Phillips. GPU Computing. Proceedings of the
IEEE, 96(5):879–899, 2008.

[20] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu.
C-SAW: A Framework for Graph Sampling and Random Walk on GPUs.
In IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1–15, 2020.

[21] Anil Gaihre, Xiaoye Sherry Li, and Hang Liu. Gsofa: Scalable sparse
symbolic lu factorization on gpus. IEEE Transactions on Parallel and
Distributed Systems, 33(4):1015–1026, 2021.

[22] Santosh Pandey, Zhibin Wang, Sheng Zhong, Chen Tian, Bolong Zheng,
Xiaoye Li, Lingda Li, Adolfy Hoisie, Caiwen Ding, Dong Li, et al. Trust:
Triangle Counting Reloaded on GPUs. IEEE Transactions on Parallel
and Distributed Systems, pages 2646–2660, 2021.

[23] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate Mi-
croarchitectural Simulation Of Thousand-core Systems. ACM SIGARCH
Computer architecture news, 41(3):475–486, 2013.

[24] Wim Heirman, Trevor Carlson, and Lieven Eeckhout. Sniper: Scalable
and Accurate Parallel Multi-core Simulation. In 8th International
Summer School on Advanced Computer Architecture and Compilation
for High-Performance and Embedded Systems (ACACES), pages 91–94,
2012.

[25] Thomas F Wenisch, Roland E Wunderlich, Babak Falsafi, and James C
Hoe. TurboSMARTS: Accurate Microarchitecture Simulation Sampling
in Minutes. ACM SIGMETRICS Performance Evaluation Review,
33(1):408–409, 2005.

[26] Davy Genbrugge, Stijn Eyerman, and Lieven Eeckhout. Interval Sim-
ulation: Raising the Level of Abstraction in Architectural Simulation.
In HPCA-16 2010 The Sixteenth International Symposium on High-
Performance Computer Architecture, pages 1–12. IEEE, 2010.

[27] Fabrice Bellard. QEMU, A Fast and Portable Dynamic Translator.
In USENIX annual technical conference, FREENIX Track, volume 41,
page 46, 2005.

[28] NVIDIA. NVIDIA A100 Tensor Core GPU Architecture.
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf, 2021.

[29] NVIDIA. TensorRT. https://developer.nvidia.com/tensorrt, 2021.
[30] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan

Stosic, Ganesh Venkatesh, Chong Yu, and Paulius Micikevicius. Accel-
erating Sparse Deep Neural Networks. arXiv preprint arXiv:2104.08378,
2021.

[31] Gary Lauterbach. Accelerating Architectural Simulation by Parallel
Execution of Trace Samples. In IEEE Proceedings of the Twenty-Seventh
Hawaii International Conference on System Sciences, volume 1, pages
205–210, 1994.

[32] Oak Ridge National Lab. SUMMIT Oak Ridge National Laboratory’s
200 Petaflop Supercomputer. Accessed: 2020, March 6.

[33] Fuentes Morales and Jose Luis Bismarck. Evaluating gem5 and qemu
Virtual Platforms for ARM Multi-core Architectures, 2016.

[34] Yuetsu Kodama, Tetsuya Odajima, Akira Asato, and Mitsuhisa Sato.
Evaluation of the Riken Post-k Processor Simulator. arXiv preprint
arXiv:1904.06451, 2019.

[35] Sunpyo Hong and Hyesoon Kim. An Analytical Model for a GPU Ar-
chitecture with Memory-level and Thread-level Parallelism Awareness.
In Proceedings of the 36th annual international symposium on Computer
architecture, pages 152–163, 2009.

[36] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition
and Machine Learning, volume 4. Springer, 2006.

[37] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic,
Randy Katz, Jonathan Bachrach, and Krste Asanović. Firesim: FPGA-
accelerated Cycle-exact Scale-out System Simulation in the Public
Cloud. In IEEE Proceedings of the 45th Annual International Sym-
posium on Computer Architecture (ISCA), page 29–42, 2018.

[38] AJ KleinOsowski and David J Lilja. MinneSPEC: A New SPEC Bench-
mark Workload for Simulation-Based Computer Architecture Research.
IEEE Computer Architecture Letters, 1(1):7–7, 2002.

[39] Thomas M. Conte, Mary Ann Hirsch, and W-MW Hwu. Combining
Trace Sampling with Single Pass Methods for Efficient Cache Simula-
tion. IEEE Transactions on Computers, 47(6):714–720, 1998.

[40] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski,
and Martin Schulz. Efficiently Exploring Architectural Design Spaces
Via Predictive Modeling. In ACM 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), page 195–206, 2006.

[41] B. C. Lee and D. M. Brooks. Illustrative Design Space Studies with
Microarchitectural Regression Models. In IEEE 13th International
Symposium on High Performance Computer Architecture (HPCA), pages
340–351, 2007.

[42] Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin
Schulz, Karan Singh, and Sally A. McKee. Methods of Inference
and Learning for Performance Modeling of Parallel Applications. In
Proceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), page 249–258, 2007.

[43] Gene Wu, Joseph L. Greathouse, Alexander Lyashevsky, Nuwan
Jayasena, and Derek Chiou. GPGPU Performance and Power Estimation
Using Machine Learning. In IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pages 564–576,
2015.

[44] Newsha Ardalani, Clint Lestourgeon, Karthikeyan Sankaralingam, and
Xiaojin Zhu. Cross-architecture Performance Prediction (XAPP) Using
CPU Code to Predict GPU Performance. In ACM Proceedings of
the 48th International Symposium on Microarchitecture (MICRO), page
725–737, 2015.

[45] I. Baldini, S. J. Fink, and E. Altman. Predicting GPU Performance from
CPU Runs Using Machine Learning. In IEEE 26th International Sym-
posium on Computer Architecture and High Performance Computing,
pages 254–261, 2014.

[46] Kenneth O’neal, Philip Brisk, Ahmed Abousamra, Zack Waters, and
Emily Shriver. GPU Performance Estimation Using Software Rasteriza-
tion and Machine Learning. ACM Transaction on. Embedded Computer
System (TECS), 16(5s), 2017.

[47] Xinnian Zheng, Pradeep Ravikumar, Lizy K John, and Andreas Ger-
stlauer. Learning-based Analytical Cross-platform Performance Pre-
diction. In IEEE International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), pages 52–
59, 2015.

[48] Xinnian Zheng, Lizy K. John, and Andreas Gerstlauer. Accurate Phase-
level Cross-platform Power and Performance Estimation. In ACM
Proceedings of the 53rd Annual Design Automation Conference (DAC),
New York, NY, USA, 2016.

