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Abstract—Triangle counting is a building block for a wide range of graph applications. Traditional wisdom suggests that i) hashing is
not suitable for triangle counting, ii) edge-centric triangle counting beats vertex-centric design, and iii) communication-free and
workload balanced graph partitioning is a grand challenge for triangle counting. On the contrary, we advocate that i) hashing can help
the key operations for scalable triangle counting on Graphics Processing Units (GPUs), i.e., list intersection and graph partitioning, ii)
vertex-centric design reduces both hash table construction cost and memory consumption, which is limited on GPUs. In addition, iii) we
exploit graph and workload collaborative, and hashing-based 2D partitioning to scale vertex-centric triangle counting over 1,000 GPUs
with sustained scalability. In this work, we present TRUST which performs triangle counting with the hash operation and vertex-centric
mechanism at the core. To the best of our knowledge, TRUST is the first work that achieves over one trillion Traversed Edges Per

Second (TEPS) rate for triangle counting.

Index Terms—GPGPU, Triangle counting, Graph algorithms, Parallel processing

1 INTRODUCTION

The number of triangles (i.e., three-vertex clique) is a key
metric to extract insights for a wide range of graph ap-
plications, such as, anomaly detection [1], [2], community
detection [3], [4], [5], [6], and robustness analysis [7]. For
more thorough studies about the applications surrounding
triangle counting, we refer the readers to recent surveys [§],
[9], [10]. Further, triangle counting is also a basic primitive
for an array of graph algorithms, e.g., clustering coeffi-
cient [11], k-truss [12], [13], [14], and transitivity ratio calcu-
lation [15]. Ultimately, the significance of triangle counting is
pronounced by the GraphChallenge competition [16], where
participants are ranked by how fast they perform triangle
counting on a collection of graph datasets.

Recent years have witnessed a surge of projects in trian-
gle counting. Briefly, triangle counting efforts fall into three
categories, that is, list intersection, matrix-multiplication,
and subgraph matching. List intersection further encom-
passes two system implementation methods, i.e., edge- and
vertex- centric options. In terms of how to intersect the lists,
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one can exploit merge-path, binary-search, and hashing-
based algorithms. Note, the bitmap is an extreme case of
hashing where the number of buckets equals to the number
of vertices. All the details about these methods are thor-
oughly discussed in Section 2.

The efforts of seeking suitable hardware platforms to ac-
celerate triangle counting has also gain momentum. Popular
attempts include multi-core CPUs [17], [18], [19], [20], many-
core GPUs [21], [22], [23], [24], [25], and external memory de-
vices [26], [27], [28], [29], [30]. Of all these platforms, GPUs
are particularly tempting for the following reasons. First
and foremost, GPUs come with unprecedented computing
and data delivering capabilities. Using recent NVIDIA Tesla
V100 [31] GPU as an example, it provides 80 streaming
multiprocessor (SM) and 64 FP32 cores/SM, which can
reach 15.7 TFLOPS peak performance. Along with High
Bandwidth Memory (HBM2) on the device, this GPU can
retain 900 GB/s memory bandwidth. The massive paral-
lelism and fast memory support are well suited for triangle
counting. Second, GPUs are equipped with configurable
on-chip shared memory where users can store frequently
accessed data structures. As we will discuss shortly, shared
memory can significantly improve the efficiency of triangle
counting. Last but not least, GPUs feature a hierarchical
thread organization, e.g., thread, warp, and Cooperative
Thread Array (CTA), which fits graphs that come with
inherent workload imbalance across various vertices.

1.1 Related Work and Challenges

Reviewing the recent literatures centering around triangle
counting, we arrive at the following challenges faced by
vertex-centric hashing-based triangle counting, along with
brief discussions about our resolutions.

Challenge 1. The hashing-based list intersection is not
suitable for triangle counting resulting from the concern of
collision. Particularly, hashing-based intersection can count
triangles as hashing puts identical elements into the same



bucket. However, with limited buckets, hashing also puts
different elements into the same bucket, known as collisions.
To lower the collision cost, [17] allocates a gigantic memory
space that is [x the original graph size. Afterwards, each
vertex u would take I x d(u), i.e., degree of u, space from the
gigantic memory space to build u’s hash table. Empirically,
[ could be 2 - 4 if we want the cost of the collision to be
low. Given this design needs a large memory space for
hash table, [17] observes high cache misses for hashing-
based designs and thus claims merge-path based method
is better for triangle counting on CPUs. Later, [32], [33],
[34] use bitmap to represent the hash bucket which still
suffers from high cache pressure. We also notice that Yacsar
et al. [35], [36], [37], [38] switch between dense and sparse
representations of a hash table in their matrix-multiplication
effort which is, however, complex in nature.

In this paper, by reordering the graph and adjusting
GPU hardware resources with respect to the vertex degree,
we turn collisions into a tolerable issue. Further, we fully
unleash the potential of hashing, that is, using hashing for
not only intersection, but also rapidly distributing workload
across many-threads in one GPU, as well as across GPUs.

Challenge 2. Vertex-centric triangle counting is worse
than the edge-centric counterpart on GPUs due to more
severe workload imbalance issues [21], [22], [23], [25]. Partic-
ularly, vertex-centric design [17], [32], [35], [36], [37] iterates
through each vertex, loads the 1- and 2- hop neighbors,
and intersects them to arrive at the triangles. Edge-centric
design [21], [22], [23], [25] does that for each edge thus
only 1-hop neighbors are needed. As a result, workload
imbalance would arise from both inter- and intra- vertex
aspects in vertex-centric design while the edge-centric coun-
terpart only experiences workload imbalance across edges.
Mathematically, the time complexity of vertex-centric design
is O(d(u) + X en(u) d(v)) for vertex u while that of edge-
centric design is merely O(d(u) + d(v)) between u and v,
where d(u),d(v) and N(u) are the degrees of u and v, and
the neighbor list of u, respectively. Hence, the workload dif-
ference between vertices is often higher than that of edges.
In terms of intra-vertex imbalance, for each vertex u, we
need to intersect u’s neighbor list with all its 2-hop neighbor
lists, where the workloads of different 2-hop neighbor lists
are also likely to be dissimilar. Note, both vertex-centric and
edge-centric designs perform accurate triangle counting and
result in the same number of triangles.

While the vertex-centric design comes with the concern
of imbalance, it also exhibits unique advantages. First, the
vertex-centric design avoids the need of the graph in edge
list format, which saves 2 of space and data movement traf-
fic [21]. Second, for hashing-based intersection, the vertex-
centric design largely reduces the cost of constructing the
hash table compared to the edge-centric method [25]. Fur-
thermore, we find that the innate GPU thread and memory
hierarchy is a great remedy for workload imbalance.

Challenge 3. The vertex-centric design makes distributed
triangle counting a grand challenge stemming from the
hardship of achieving communication free and workload
balanced graph partitioning. As graphs continue to grow,
a single machine (or device) will eventually fail to accom-
modate a large graph in the memory. As a result, researchers
rely upon either external memory options [9], [26], [39],
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[40] or distributed settings [21], [22] to resolve this prob-
lem. In order to achieve better performance, both designs
need communication free and workload balanced graph
partitioning. However, even for edge-centric design which
only requires 1-hop neighbor lists, achieving both goals is
challenging, which is evident both theoretically [22], [41]
and practically [19], [22], [23], [27], [42]. The vertex-centric
design requires 2-hop neighbors, which further exacerbates
the imbalance and communication problems.

In this work, we separate the goal of achieving commu-
nication free and workload balance during graph partition-
ing. For the first goal, we propose a 2D graph partitioning
algorithm, that partitions the 1-hop neighbors and uses the
1-hop neighbor partitions to build the 2-hop ones so that the
vertex range partitions of 1-hop neighbors are the same as
the 2-hop ones. The workload balancing goal is achieved by
hashing-based partitioning over our reordered graphs. And
we further partition the workloads in order to scale TRUST
up to 1,000 GPUs.

1.2 Contributions

This paper designs and implements a vertex-centric
hashing-based triangle counting system on GPUs that can
achieve beyond the trillion TEPS performance on random,
rMat, and 3Dgrid graph datasets. Particularly, this work
not only reveals and leverages the unique advantages of
hashing and vertex-centric designs for scalable triangle
counting on GPUs but also carefully designs optimizations
to overcome the key challenges faced by the vertex-centric
hashing method. In summary, this work makes the follow-
ing contributions.

First, vertex-centric hashing presents great potentials for
GPU-based triangle counting. In spite of collision concern,
hashing-based intersection exhibits advantageous features
over both merge-path [43] and binary-search [21] based
counterparts [44], [45]. Particularly, merge-path suffers from
workload partitioning hardship, while hashing does not.
Binary-search experiences high time complexity at O(logN),
and hashing lowers that cost to O(1). Furthermore, binary-
search requires random access to the binary tree, while our
interleaved hash table layout and linear search enjoys coa-
lesced memory access. For vertex- vs. edge- centric design
comparison, vertex-cenric design only needs the graph in
adjacency list format while the edge-centric design requires
both edge list and adjacency list formats of a graph. Putting
hashing and vertex-centric designs together, TRUST avoids
repeated hash table construction in edge-centric design [25].
On average, the vertex-centric design reduces the hash table
construction time by 92x. When deployed on GPUs, we
interleave the entries from all buckets and exploit GPU
shared memory to lower the hash table lookup cost.

Second, admittedly, vertex-centric hashing also comes
with drawbacks, i.e., collisions and workload imbalance,
which require optimizations. Towards collision reduction,
we propose a graph reordering technique that reorders the
vertex IDs of a graph. Since optimal reordering is NP-
complete, we find two effective heuristics. The intuition
behind these heuristics is that we should prioritize the
high-degree vertices and their neighbors when lowering the
collisions. This approach enhances the performance by up
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CPU [13] [17], [27], [30] [26], [29] [17] [35], [36], [37], [38], [46], [47] [48], [49]
GPU | [13], [21], [22], [23], [24], [50] [43] [33], [34], [51] TRUST [25] [36], [52] [52]

TABLE 1: Closely related projects for TRUST.

to 75%. For intra-vertex workload imbalance, we introduce
a virtual combination method to virtually combine the 2-
hop neighbors in order to ultimately balance the intra-
vertex workload. This yields, on average, 50% speedup
across all graphs. Taken collision and inter-vertex workload
imbalance together, we introduce degree-aware resources
allocation mechanisms that give large degree vertices more
hash buckets, shared memory, and threads. This design
yields, on average, 7x speedup across all the graphs.

Third, we introduce graph and workload collaborative,
hashing-based 2D partitioning scheme to scale triangle
counting beyond 1,000 GPUs. Particularly, we use hashing,
instead of vertex range, to partition the graph into 2D (i.e,,
partition both source and destination vertices) so that each
partition comes with similar amounts of workload, thanks
to our graph reordering method. Subsequently, for each 1-
hop neighbor partition used for hash table construction, we
use the 1-hop neighbor partitions to build up the 2-hop
neighbor partitions because our hashing-based 2D partition
ensures the source and destination vertices are evenly parti-
tioned. The partitioning approach is detailed in Figure 9(b).
Since different 2-hop partitions can enumerate the triangles
independently, we further introduce workload partitioning,
which distributes various 2-hop neighbor partitions across
more GPUs. Taken together, our graph and workload collab-
orative partitioning can saturate 1,024 GPUs with merely 64
graph partitions. This design is not only space and workload
balanced but also communication free. Particularly, for ex-
tremely large graphs, we achieve 1.9x speedup from 512 to
1,024 GPUs and beyond 600x speedup for medium graphs
from 1 to 1,024 GPUs.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2
presents the background. Section 3 describes the novel
TRUST designs. Section 4 presents the optimization tech-
niques for hash collision and workload imbalance. Section 5
presents our workload and graph collaborative partition
methods. Section 6 evaluates the performance of TRUST and
Section 7 concludes.

2 BACKGROUND
2.1 Notation and Terminology

Let G(V, E) be an undirected and unweighted graph, V' and
E be the vertex and edge sets of G, respectively. Graphs
are often stored in the array style data structures, among
which edge list and Compressed Sparse Row (CSR) formats
are the mainstream options. Particularly, an edge list is a
collection of all the edge tuples in G, where each tuple (u, v)
is an edge from u to v in G. CSR format uses two arrays,
i.e., begin position and adjacency list. The adjacency list is a
concatenation of the out neighbor lists of all vertices, and the
begin position specifies the starting position of the neighbor
list of each vertex.

2.2 Triangle Counting Algorithms

This section describes the mainstream triangle counting
algorithms, i.e., intersection and other alternatives - matrix-
multiplication and subgraph matching based methods. Ta-
ble 1 categorizes these closely related projects.

Intersection based approach encompasses three algo-
rithm options, i.e., merge-path, binary-search, and hashing,
which could be implemented in either vertex-centric or
edge-centric fashion. Merge-path based intersection uses two
pointers to scan through two lists from beginning to end
in order to find the intersection between them. During
scanning, the pointer that points to a smaller value will be
increased. A triangle is enumerated if both pointers increase
(i.e., they point to the same vertex). [17], [27], [30] observe
that merge-path suits CPU based triangle counting due to
lower time complexity compared with binary-search and
higher cache hit rate compared with hashing. Binary-search
based intersection organizes the longer list as a binary tree,
and uses the shorter list as search keys. For each search
key, it descends through the binary-search tree in order to
find the equal entry, which is a triangle. Hu et al. [21], [22],
[23] indicate that edge-centric binary-search fits GPU based
triangle counting because of higher parallelism and more
balanced workloads. Hashing-based intersection constructs a
hash table for one list, then uses the other list as search
keys to find the common elements in the hash table. Partic-
ularly, [17] only allows one element in each hash bucket of
the hash table, which is also referred to as open addressing.
When collision surfaces, this method uses linear probing
mechanism. To avoid the high cost of linear probing, this
method creates many hash buckets in the hash table, leading
to overwhelming space consumption. Bitmap can be thought
of as a hash table with |V| buckets, which eliminates col-
lision but consumes significantly more memory. Bisson et
al. [33], [34], [51] also perform vertex-centric GPU-based
triangle counting. However, these projects use bitmaps to
implement hash tables, which suffer from high memory
consumption and are hence only suitable for small graphs.
Several triangle counting projects [26], [29] also explore the
bitmap option since they rely upon large external memory
storage for triangle counting.

Figure 1 explains how the aforementioned three inter-
section algorithms work on two lists M and N. As shown
in Figure 1(b), merge-path uses the vertical and horizontal
pointers to scan through these two lists. Since the first
element in M, i.e., 2, is smaller than that of N, the vertical
pointer is increased. Further, because both M and N have
3 as their elements, both pointers are increased, and one
triangle is enumerated. Similarly, we can enumerate all
the triangles. In binary-search based method, as shown in
Figure 1(c), we use each element of M as the search key to
search against the binary tree of N. For element 3 of M, the
search keeps descend on the left side of N in order to find all
the triangles. Figure 1(d) depicts the hashing-based solution
in [17]. This method first constructs a hash table for longer



N
304050671818 M[2[3]4]5]18

Intersection
(a) Neighbor list
Fig. 1: Four triangle counting methods. (a) M and N are the neighbor lists used by (b) - (d) which are merge-path, binary-
search, and hashing-based intersection. And (e) uses matrix-multiplication to perform triangle counting for graph A.

(b) Merge-path

list N. Since HASH(18) = 8, element 18 first searches the
index 8 in hash table, then linear probes to the next element
which is 18, where a triangle is identified.

Existing intersection based approaches often exploit
graph orientation to reduce the number of edges in the
graph by half in order to reduce redundant work [17],
[18]. For a pair of undirected edges, rank-by-degree method,
a representative graph orientation approach, removes the
edge whose source degree is larger than the destination
degree and preserves the remaining edge.

Matrix-multiplication based approach decomposes the
adjacency matrix (i.e.,, A) of the graph into lower and up-
per triangular matrices L and U, respectively, as shown in
Figure 1(e). Then it performs B = L - U, which counts the
number of wedges. Further, the element-wise multiplication
(i.e., Hadamard Product) of A and B determines whether
the wedge is closed. Finally, we summarize the number of
non-zero elements in the resultant matrix. Since each edge is
counted by both vertices, the final sum is divided by 2 to get
the exact count of triangles. Using Figure 1(e) as an example,
L[2]] = [1,0,0,0] multiplying U[][3] = [1,0,1,0] arrives
at 1, i.e,, B[2][3] = 1, it means there is a wedge between
(2,0) and (0, 3). Afterwards, element-wise product between
A[2][3] and BJ[2][3] can confirm whether there is an edge
which closes the wedge. Yacsar et al. [35], [36], [37], [38],
which leverage KokkosKernels linear algebra library [53] to
count triangles, belong to this genre.

Subgraph matching based approach searches for all oc-
currences of a query graph in a data graph. Triangle count-
ing regards the triangle as that query graph. [52] implements
a two-step subgraph matching approach for counting the
number of triangles on undirected labeled graphs. First, the
query graph - triangle in this case - is factored into a tree
and the non-tree edges. Afterward, one finds all the vertices
from the data graph that matches the root of the query tree
using degree-based filtering. Subsequently, one traverses the
query tree as well as the data graph from the candidates of
the root with the matching rule. Finally, one joins the tree
candidates and non-tree edge candidates to arrive at all the
triangles in the data graph.

2.3 Approximate Triangle Counting

Since triangle counting in extremely large graphs is com-
putationally expensive, some researchers also explore ap-
proximate triangle counting algorithms to reduce the run-
time [17], [41], [54], [55], [56], [57], [58], [59], [60], [61],
[62], [63]. Among them, [54], [58] estimate the number of
triangles by sampling the edges, and only counting triangles
for the sampled edges. [17], [55] first color the vertices,

(c) Binary-search
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then keep the edges that connect two same-colored vertices.
Further, they count the triangles in the sampled subgraphs
and estimate the total triangles in the graph. [64] approxi-
mates the triangle count by wedge sampling. [60] performs
a detailed experiment to compare these different sampling
approaches. In addition to graph sampling-based method,
[61], [62], [63] approximate the count of triangles based on
spectral decomposition of the graph.

2.4 Hardware Platforms for Counting Triangles

In addition to only using either CPU or GPU to count
triangles, [36], [65] use CPU and GPU together to accelerate
the intersection computation. We also find out that [66]
deploys triangle counting on FPGAs, which presents better
energy efficiency.

2.5 Graph Partitioning Methods

Value-range based partitioning, such as 1D [67], [68] and
2D partitioning [69], is one of the most popular approach
for triangle counting. In this direction, [70], [71] design
a 2D graph partitioning based on MapReduce, but suffer
from workload imbalance. [21], [22] balance the workload
of 2D partitioning by a runtime workload stealing scheme.
However, this introduces nontrivial overheads. [36] deploys
2D partitioning on matrix-multiplication based triangle
counting. Whereas, the workload imbalance problem still
exists. [19], [24] distribute edges of graph among different
machines and cache the vertices requiring communication
among the machines during triangle counting. METIS [72] is
a well-known topology-aware graph partitioning approach
that aims to make balanced vertex/edge yet with lower
edge cuts. This method, however, would require inter-
worker communication when counting triangles. Recently,
LiteTe [42] also attempts to use value-range based 2D
partitioning for triangle counting, but, again, experiences
workload imbalance.

2.6 Graph Dataset

Table 2 presents all the graphs that are used to evaluate
TRUST. Broadly, these datasets fall into three types, that
is, synthetic graphs, regular real-world graphs and ex-
tremely large real-world graphs. Particularly, RA, RM, and
3D are generated by the Problem Based Benchmark Suite
(PBBS) [73]. In the regular real-world graph categories, MA
is the Internet traffic archive [74]. CP, OR, and FS are from
Stanford Network Analysis Project (SNAP) datasets [75].
TW [76] is the Twitter graph, and WK [77] is the English
Wikipedia link graph. The remaining are web graphs, i.e., IT
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Dataset Abbr. 4 |E| # Triangles
3Dgrid 3D 99,897,344 299,692,032 0
random RA 100,000,000 999,999,892 1,221
rMat RM 129,594,758 996,771,953 4,114,616
Cit-Patents CP 3,774,768 16,518,947 7,515,023
Friendster FS 65,608,366 1,806,067,135 4,173,724,142
gsh-2015-host GH 68,660,142 1,502,666,069 520,901,310,734
it-2004 IT 41,290,682 1,027,474,947 48,374,551,054
MAWI MA 128,568,730 135,117,420 10
Orkut OR 3,072,441 117,185,083 627,584,181
Twitter ™ 41,652,230 1,202,513,046 34,824,916,864
Wikipedia WK 12,150,976 288,257,813 11,686,212,734
clueweb12 Cw 955,207,488 | 37,372,179,311 | 1,995,295,290,765
uk-2014 UK 787,801,471 | 42,464,215,550 | 7,872,561,225,874

TABLE 2: Graph datasets.

and GH, as well as the extremely large real-world graphs,
i.,e., CW and UK from WebGraph [78], [79], [80]. Our evalu-
ation transforms the graph by following steps: i) removing
the duplicate edges and self-loops; ii) transforming directed
graphs to undirected graphs; and iii) removing orphan
vertices. The size of the graph and number of triangles are
also included in Table 2.

3 TRUST: VERTEX-CENTRIC
TRIANGLE COUNTING

The consensus from recent literatures [17], [21], [52] implies
that merge-path is the ideal option for multi-core CPU while
binary-search excels on many-core GPUs. Hashing is a poor
option stemming from the fact that existing attempts often
use large memory space to combat collisions, which ends up
with overwhelming memory consumption and poor cache
reuse. Further, due to the concern of workload imbalance
with vertex-centric design, the edge-centric design appears
as the mainstream option for triangle counting [21].

This work advocates vertex-centric based hashing for
triangle counting on GPUs because hashing can rapidly
distribute workload across threads and GPUs, and vertex-
centric approach reduces both the time for hash table con-
struction and the memory space for graph datasets.

HASHING-BASED

3.1 TRusT Algorithm

Algorithm 1 shows our vertex-centric hashing-based trian-
gle counting algorithm, which mainly contains two steps:
i) constructing hash table (hashTable) for the neighbor list
(neighbor List) of current vertex w, i.e., u.neighborList, ii)
for each neighbor v of u, searching whether v’s neighbors
appear in the hashT able. While the majority of the variables
in Algorithm 1 have self-explanatory names, we briefly
describe how TRUST handles collisions as follows.

Different from prior arts [17], [33], [34], [51], TRUST
exploits a more efficient approach to handle collisions, that
is, we allow a bucket to contain more than one element.
Here, all the buckets are of the same size and allocated
in a continuous memory region, which is slightly differ-
ent from the classical dynamic chaining strategy. In light
of this design, each bucket hashTable(i) has two fields,
i.e., hashTable(i).len and hashTable(i).element. The for-
mer field is the number of elements in bucket i. Here,
hashTable(i).len — 1 is also the number of collisions in this
bucket. The latter field is an array that contains all the
elements in bucket i, e.g., hashTable(i).element(j) is the

Algorithm 1 Vertex-centric hashing-based triangle counting.

: for all u € V in parallel do //Main entry
hashTable = HASHTABLECONSTRUCTION (u.neighbor List);
for all v € u.neighborList in parallel do

count+ = INTERSECTION (hashT able, v.neighbor List);
end for
: end for

[ARSUERON S S

7: function HASHTABLECONSTRUCTION(neighbor List)
8: for ¢ = 0 to bucket Number — 1 in parallel do

9: hashTable(i).len =0
10: end for
11: for all v € neighborList in parallel do
12: i = HASH(v);
13: len = atomicAdd(hashTable(i).len, 1);
14: hashTable(i).element(len) = v;
15: end for

16: return hashTable;
17: end function

18: function INTERSECTION(hashT able, neighbor List)
19: for all w € neighborList in parallel do

20: i = HASH(w);

21: count+ = LINEARSEARCH(hashTable(i), w);
22: end for

23: return count;

24: end function

25: function LINEARSEARCH(bucket, w)
26: for j=0 to bucket.len — 1 do

27: if bucket.element(j) = w then
28: return 1;

29: end if

30: end for

31: return 0;

32: end function

33: function HASH(x)
34: return x%bucket Number;
35: end function

j + 1-th element in this bucket. During hashT able construc-
tion, we use atomic operation to allow concurrent write to
hashTable, where atomicAdd(hashTable(i).len, 1) returns
the location for the new element. During intersection, to de-
termine whether w is in a hashTable, we calculate HASH(w)
which returns the bucket to search against.

TRUST relies upon linear-search (line 25 of Algorithm 1)
to search within the bucket of interest, which counters the
traditional wisdom that often prefers binary-search stem-
ming from two reasons. First, binary-search needs to sort
all the elements in each hash bucket while linear-search
does not. Second, since our hashT able stores the elements
of the same index across all buckets together (detailed in
Section 3.2), linear-search enjoy coalesced global memory access
while binary-search does not.

Considering the memory cost of hashTable, we assign
a fixed size of GPU global memory for each warp, sub-
sequently reuse this space for each processing vertex. In
implementation, we use 1,024 CTAs, each of which has 32
warps. Each hashTable in a warp contains 32 buckets with
the maximum collision number as 128. In this case, the total
memory consumption for hashT'able is 512 MB.

3.2 GPU-Friendly hashTable Layout

As shown in Figure 2, TRUST further optimizes
hashTable layout including hashTable(i).len and
hashTable(i).element. First, we cache hashTable(i).len
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Fig. 2: Linear- vs. binary- search for hash bucket search.

in the shared memory. Second, we interleave the hash
buckets of each hashTable and cache the first few items of
each bucket in shared memory.

We store hashTable(i).len in shared memory because
a significant number of buckets are empty, and storing
hashTable(i).len in shared memory avoids expensive global
memory access. Further, hashTable(i).len is frequently ac-
cessed during both construction and linear-search. During
construction, atomicAdd() in shared memory is much faster
than in the global memory.

For hashTable(i).element, we optimize it in two ways.
First, we store each level of a bucket consecutively instead
of storing all the elements of a bucket consecutively so
that consecutive threads access consecutive addresses. This
leads to coalesced global memory access in linear-search.
Using Figure 2 as an example, the four hash buckets are
{4, 8, 12, 20, 24}, {5, 10}, {6, 18, 22}, and {3, 7, 11, 19}.
We store them as {4, 5, 6, 3, 8, 10, 18, 7, 12, -, 22, 11, 20,
- - 19,24, -, -, -} in memory. In this example, one GPU
global memory access transaction can load four adjacent
elements, which is one row in this particular case. During
binary-search, the four threads accesses 5, 7, 12, and 18
in the first round, which leads to three global memory
transactions. In contrast, linear-search accesses 4, 5, 6, and 3
in the first round, which is merely one global memory access
transaction. Overall, in this example, linear-search performs
four global memory access transactions while binary-search
needs seven. Second, we store the first several elements of
each bucket in the shared memory. Note, it is not always
better to cache more elements in shared memory due to
the occupancy concern [81]. Further, recent GPU architec-
tures, such as, V100, adopts a unified shared memory/L1
cache [31]. Using more shared memory reduces the L1 cache
size thus hurts the overall performance.
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Fig. 3: Hash memory optimizations.

Figure 3 shows the performance of TRUST with respect to
the number of elements cached in each bucket. We observe
that the performance climbs with the increase of cached
elements for RA, RM, CP, and GH while the remaining
graphs retain similar or worse performance. In this work,
TRUST caches 6 elements in shared memory for each bucket.

In an unlikely case, the hashTable may reach the max
collision threshold. In that case, linear probing is used to
determine the next bucket for storing the neighbor. Conse-
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Fig. 4: Time consumption percentage of hashT able construc-
tion, intersection, and the remaining for (a) edge-centric and
(b) vertex-centric designs, respectively.

quently, during triangle counting, when a bucket is full, we
need to perform linear-search in more than one bucket. Since
linear probing is expensive, our optimizations (Section 4)
and partitioning schemes (Section 5) are designed to avoid
this. In our tests, the max collision across all graphs is often
no more than 16 while our bucket size threshold is 128.

3.3 Vertex-Centric Hashing

Algorithm 2 Edge-centric hashing-base triangle counting

1: for all (u,v) € E in parallel do

2: hashTable = HASHTABLECONSTRUCTION (u.neighbor List);
3: count+ = INTERSECTION (hashT able, v.neighbor List);

4: end for

We observe hashing-based intersection favors the vertex-
centric design despite that traditional efforts prefer the edge-
centric design. The reason lies in that we need to construct
hashT able before intersection, and hashT able construction time
is also included in the total execution time [25]. Note, if that
time is excluded, the comparison between TRUST and other
related works would be unfair. We further find that even
if we were permitted to construct the hashTable before
counting triangles, hashTable often consume significantly
more memory than the neighborList format, which is not
suitable for GPUs that install limited memory space.

Vertex-centric design consumes significantly shorter
time than edge-centric design on hashTable construction
since vertex-centric option only constructs hashT able once
for each vertex, while the edge-centric counterpart needs
to do that repeatedly. As shown in Algorithm 2, for each
destination vertex v of u, we need to construct the hashT able
for u, which is time consuming. As shown in Figure 4, the
time consumption ratio of hashTable construction is 1%
- 57% in edge-centric option [25]. In contrast, our vertex-
centric design reduces the hashT able construction time ratio
to 0.007% - 16%. When it comes to absolute time consump-
tion, hashTable construction time of vertex-centric design
is reduced by 12.9x (RM) to 199.6x (GH), on average, 92x
when compared to that of edge-centric design.

Vertex-centric hashing reduces the memory consump-
tion for graph data. Particularly, vertex-centric hashing does
not require the edge list format of the graph which is needed
by edge-centric counterpart. Note, edge list consumes about
2x memory compared with CSR format. Alternatively, Tri-
Core [21] proposes to stream the edge list from CPU to
GPU memory in order to reduce the memory consumption
for the edge list. However, this design significantly affects
the triangle counting performance as pointed by the recent
study [23].



4 CoLLISION REDUCTION AND WORKLOAD BAL-
ANCING OPTIMIZATIONS

Once the hashT'able construction time is significantly re-
duced by Section 3, intersection becomes the bottleneck as
shown in Figure 4(b). This section optimizes the intersection
through collision reduction and workload balancing.

4.1 Graph Reordering for Collision Reduction

According to Algorithm 1, the cost of intersection can be
formulated as Equation (1), assuming each 2-hop neigh-
bor w of u needs to search through the entire bucket
hashTable, (HASH(w)):

> > ) hashTable,(HASH(w))len, (1)

u€V veN (u) weN (v)

where hashTable,, N(u) and N(v) represent the hashTable
for u, u.neighbor List and v.neighbor List, respectively.

Putting the analysis of Equation (1) in the GPU context,
where a warp of threads work on 32 2-hop neighbors in
Single Instruction Multiple Thread fashion, the cost of linear-
search is approximately decided by the max collision of all
the buckets in a hashTable. Consequently, we arrive at the
following estimation:

o= Z ( Z degree(v)) - max(hashTable,.len).  (2)

u€V veEN (u)

Max collision of u

Collective degree of u

Simply put, for each vertex u, the cost is propor-
tional to the collective degrees of all neighbors of v, ie.,
>ven(u) degree(v), as well as maximum collision of this
hashTable of u. Optimizing the order of the entire graph to
arrive at the minimal cost for Equation (2) is NP-complete,
according to similar efforts for locality improvement [82].
Given the complex nature of this problem, we explore the
following two heuristics to reduce the maximum hash col-
lision guided by Equation (2). Particularly, since reordering
does not affect the collective degree of v in Equation (2),
our reordering can only change the maximum collision.
Note, these two techniques are separate and can not be used
together.

o Reordering by indegree is guided by the fact that a
vertex with higher indegree is more likely to appear in
the neighborList of other vertices. Consequently, this
indegree method proposes to assign continuous IDs
to vertices based upon their indegrees. In this way,
large indegree vertices will have different hash values
because their IDs are continuous. During hashT able
construction, these vertices are more likely to appear
in the same neighborList and less likely to be hashed
into the same bucket, leading to a lower chance of
maximum collision. For reordering, the vertices need
to be sorted by their indegree. So, the time complexity
is O(|V|log|V]).

« Reordering the neighbors of the largest collective
outdegree first is guided by the collective degree of u in
Equation (2). Particularly, we observe that if we choose
to minimize the maximum collision of the vertices with
the largest collective degree, the cost ¢ will reduce: i)

7

This collective method sorts the vertices based upon
their collective degrees. ii) For each v € u.neighborList,
if it does not have an assigned ID, we assign a new
ID to it, where the new ID grows continuously. Dur-
ing hashTable construction, the continuous IDs of the
neighbors in the largest outdegree vertex will experi-
ence minimum collision in neighbor List. For reorder-
ing, the vertices need to be sorted by collective degree,
and each edge needs to be scanned once. So the time
complexity is O(|V'|log|V'| + |E]).

4.2 Virtual Combination for Workload Balancing
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Fig. 5: The intra-vertex workload imbalance.

Intra-vertex workload imbalance hampers the perfor-
mance of vertex-centric hashing. Figure 5 shows the work-
load imbalance with a boxplot of the ratio of maximum
degree (v)/minimum degree (v) for each u, where v €
u.neighborList. Particularly, the average of all the medi-
ans is 16 across graphs, with the average of the maxi-
mum as 2,648. We consequently need to accommodate each
v € u.neighborList distinctly.

There mainly exist two conventional resolutions to solve
such an intra-vertex workload imbalance problem. i) Warp-
centric uses a warp of threads to work on one vertex so
that the workload imbalance issue can be mitigated across
all threads in a warp. However, this approach would suf-
fer from thread under utilization since the average of the
median is 16 which is smaller than the size of a warp.
ii) Subwarp [83], [84] is a straightforward optimization
to mitigate the idling thread problem in the warp-centric
approach. Basically, this method divides a warp into several
subwarps and assigns each subwarp to one neighborList.
This technique reduces the number of idling threads, but
not entirely. Furthermore, some neighbors might have
neighbor List whose sizes are larger than the subwarp sizes,
leading to yet another workload imbalance concern.

TRUST aims to ultimately resolve the workload imbal-
ance and thread idling issues. We introduce two possible
designs, i.e., physical and virtual combinations. The former
one copies all the neighborList of v into a single com-
bined array and processes them together. However, copying
all the neighborLists of v into one array could consume
both nontrivial time and memory [85]. Virtual combination
avoids copying the neighborList of v into a combined array
via on-the-fly calculation of the 2-hop neighbor indices for each
thread. Particularly, assuming we are working on vertex u,
because thread i copies the 2-hop neighbors of u to indices
1,1+ 32, etc., in the combined array, we simply need to find
which v € neighborList(u) contains neighbors that will be
copied to those indices. Once v is identified, we can further
calculate which neighbor of v will be copied by thread .
This way, we find the neighbors for thread i.



RM RA 3D MA CP OR WK TS W T GH CW UK
BS 0 ] 5 2 9 29 50 Py) 46 T4 335 156 358
co 10 8 5 12 9 15 14 17 15 14 18 16 23
CO + RO (IN) 10 8 4 9 8 15 15 16 17 13 16 15 22
CO + RO (OUT) 9 8 4 9 6 14 15 16 15 12 15 15 20
CO + RO (OUT) + PA - - - - - - 11 13

TABLE 3: Max collision, where BS, CO, RO (IN), RO (OUT), and PA stand for basehne, co- optlmlzatlon reordering, indegree
based reordering, outdegree based reordering, and partition, respectively.

Step 2 .
v € neighborList (u) | 2 |3 |4 |5 neighborList(4)
Degree(v) 71312(615 Index 10 11
Inclusive prefix-sum | 7 | 10|12 |18 |23
— Thread 11
Step 1

Fig. 6: Virtual combination.

Figure 6 uses an example to aid the understanding.
Assuming vertex v has neighbors {2, 3, 4, 5, 7} and their
degrees are {7, 3, 2, 6, 5}, leading to the inclusive prefix-sum
of these degrees as {7, 10, 12, 18, 23}. For thread 11, its index
of interest is 11. At step 1, this thread finds v = 4 which
contains the neighbors that this thread will process because
v = 4’s neighbor range is [10, 12) in the combined array.
At step 2, this thread computes that the second neighbor of
vertex v = 4 becomes the neighbor stored at index 11 in the
combined array. Thus, the second neighbor, i.e., 7, will be
processed by thread 11.

4.3 Collision and Workload Imbalance Co-optimization
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Fig. 7: Degree distribution of each graph after orientation.

This part is motivated by the key observation in Figure 7,
that is, even after orientation [17], various vertices present
different degrees. Particularly, the difference of maximum
and minimum degrees can reach as high as 10,005 for GH
graph. These degree differences manifest as differences in
hashTable construction cost, collision, and workload.

We advocate assigning different computing and shared
memory resources for vertices with dissimilar degrees. Par-
ticularly, we assign a CTA with more shared memory for
larger degree vertices, a warp and a smaller amount of
shared memory for smaller degree vertices. Based upon our
evaluation, we label vertices with degree > 100 as a large
vertex for better performance. Note that we do not need to
process vertices with degree < 2 since a vertex needs at least
two neighbors to enumerate a triangle. It is important to
note that large degree vertices obtain not only more threads
to construct hashTable and conduct intersection, but also
more shared memory to cache hash buckets.

Table 3 studies the maximum collision changes with
respect to various optimizations. Particularly, the maximum
collision in the baseline version is larger than our threshold
(128) in TW (146), and GH (335) graphs. However, after our
collision-reducing optimizations, the maximum collision is

no more than 16. For the extremely large graphs (i.e., CW
and UK) whose sizes are bigger than GPU memory, the par-
titioning scheme can reduce the maximum collision below
16, in addition to the help from CO and RO optimizations.
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Fig. 8: Chunk size selection.

While degree-aware resource assignment can mitigate
the workload imbalance, there still exists inter-vertex work-
load imbalance. We further introduce an atomic operation-
based dynamic workload assignment to balance the work-
load. In this design, each warp/CTA gets a chunk of vertices
atomically at a time. Depending upon the graph, the chunk
size can be dissimilar. Figure 8 shows the performance
impacts of various chunk sizes. For sparse graphs, e.g., 3D,
CP, and MA, a larger chunk size leads to 27% (3D, chunk
size = 7), 5% (CP, chunck size =3) and 19% (MA, chunk size
= 3) speedup. For the rest of the graph datasets, chunk size
=1 gives the best performance.

5 ScCALABLE TRIANGLE COUNTING VIA GRAPH
AND WORKLOAD COLLABORATIVE PARTITIONING

This section tackles the scalability challenge for triangle
counting via a graph and workload collaborative partition-
ing design. As shown in Table 4, with n? graph partitions,
as long as each of them can fit in GPU memory, TRUST can
scale up to m - n® GPUs, where m and n are the numbers of
workload and graph partitions, respectively.

Partition approach Workload | Graph | Workload&Graph

#Tasks (i.e. GPUs) m n3 m-n3

#Graph partitions 1 n? n?
Average #edges/task |E| % %

TABLE 4: Graph and workload collaborative partition vs.
traditional workload alone, and graph partition alone meth-
ods, where m and n are numbers of workload and graph
partitions, respectively.

5.1

Workload Partitioning assumes the entire CSR format of the
graph can fit in a GPU memory so that we can directly
duplicate the entire graph across all the GPUs. Subsequently,
we only need to focus on the workload distribution across
GPUs. An intuition of workload partition is to distribute all
the vertices into m subsets. Afterward, each GPU can work
on one such subset and count the triangles.

Workload Partitioning
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Fig. 9: 2D partition for vertex-centric triangle counting as well as hashing-based 2D partition.

TRUST achieves balanced workload assignment through
hashing on a slight modification to our aforementioned
graph reordering techniques (Section 4.1). Particularly, in-
stead of assigning continuous IDs to all v € u.neighbor List
in the prior design, we first divide v into three subsets: [0, 2),
[2, 100] and (100, +oc0). Subsequently, we assign continuous
IDs to v € (100, 4+0) from wu first, then v € [2, 100], and
finally v € [0, 2). One can exploit radix hashing to distribute
the vertices to various GPUs evenly. For instance, assuming
there are ¢ GPUs, for GPU i, we let it process vertex
u such that u%g = i. Because our reordering approach
assigns continuous IDs to vertices with similar degrees,
radix hashing ensures that vertices of similar workloads are
evenly disseminated to across GPUs. Note, this design is
distinct from the traditional 1D /2D partitioning efforts [21],
[22], [86] that assign a continuous range of vertices to each
GPU. And, in this case, the collective reordering becomes an
collective-degree-then-outdegree based reordering.

5.2 Graph Partition

Chances are the entire CSR of a graph might not fit in the
GPU memory, e.g., UK graph [80] evaluated in this paper
consumes more than 160 GB memory. When this happens,
we need to partition the graphs into smaller subgraphs so
that each of them can fit in GPU memory. This also under-
scores the weakness of prior projects [21], [22] that need
both edge list and neighborList for triangle counting. To
better illustrate the design, we first review what information
is needed in vertex-centric hashing-based triangle counting
on a single GPU. Particularly, we need three neighbor List:
(i) u’s 1-hop neighborList to construct hashT able.
(if) u’s 2-hop neighborList.
(iii) w’s 1-hop neighborList as sources to fetch the 2-hop
neighbor List of bullet (ii).

It is important to note that vertex-centric triangle count-
ing focuses on the range of vertices. Particularly, for a vertex
u falling in a specific range, we can use all the partitions of
that row to construct the hashT'able, as well as the 1-hop
neighbor to fetch the 2-hop neighbors. As shown in Figure 9,
using ue [%, |[V]) as an example, we can use Py, Po1
and P, to build the hashTable and fetch 2-hop neighbors.
However, using Psg, P»1 and Ps, together to fetch the 2-hop
neighbor would result in fetching the entire graph.

Partitions for 2-hop neighbors. The good news is — in
order to extract a triangle, we only need the vertex range
of the hashTable to overlap that of the 2-hop neighbor.
This helps reduce the number of fetched 2-hop neighbor
partitions tremendously. For instance, for P, that is used
for hashTable construction, only 2-hop neighbor partitions
whose destination vertices fall in [%, %) are needed. In
this example, only Fy;, P11 and P»; are needed for 2-hop
neighbors. Similarly for Py and Pss.

Partitions for 1-hop neighbors. We further need to fetch
the 1-hop neighbor partitions that are used to index the 2-
hop neighbor List. The key is that u’s 1-hop neighbors used to
construct the hashTable and the 1-hop neighbors used to index
the 2-hop neighbors can be different. If we force them to be the
same, we will end up only intersecting the hashT'able with
the diagonal partitions. Using u’s range of [%7 |V|) as an
example, the second partition, that is, P»; from Figure 9(b) is
used to construct the hashTable. We can use any partitions
whose source vertices are in the range of [%, |V|) as the
sources to index the 2-hop neighbors. In this case, Psg,
P51 and P»; are the qualified partitions to index the 2-hop
neighbor Lists.

In addition to soundness, this design is also complete be-
cause we exhaust all the possible 2-hop neighbor partitions
for each hashTable partition. As shown in Figure 9(b), for
the 1-hop neighbor partition P»; that is used to construct the
hashTable of the vertices under processing u € [%, V1),
we use all the possible 1-hop neighbors, that is, Py, P21 and
P55, as sources to index the 2-hop neighbors.

5.3 Workload and Graph Collaborative Partition

This section further integrates our graph partitioning tech-
nique with our workload partitioning design. Particularly,
for the same hashT able, we distribute each 2-hop neighbor
partition to one GPU, so that all GPUs work on different
workloads of the same hashTable. We distribute three 2-
hop neighbor partitions Psg, P>1 and Psy - of the hashT'able
partition P»; across three GPUs. With total n® subtasks, we
further divide each subtask into m workload partitions in
order to scale to m - n* GPUs.

It is worthy of mentioning that, instead of using vertex
range-based 2D graph partitioning as shown on the left
side of Figure 9(a), TRUST exploits hashing to generate the
partitions in Figure 9(c). For partition P;;, it contains the
edges (u,v) where u%n = ¢ and v%n = j. As shown
in Figure 9(c), we first exploit hashing to decide which
row partition v belongs to, subsequently, another hashing
towards v € u.neighborList to decide which column par-
tition each v belongs to. Thanks to our reordering, our
hashing-based partition warrants a roughly similar number
of vertices and edges for each partition.

However, since using hashing to partition vertex set
will lead to noncontinuous IDs for each partition that is
detrimental to hashTable construction, we reassign IDs by
newlD = |oldID/n|. In this way, the vertices IDs in each
partition become continuous. And partitioning only needs
to scan each edge once, resulting in a time complexity of
O(E).

Integrating partitioning with aforementioned opti-
mizations. Here, the aforementioned optimizations are



“reordering”, and “collision and workload imbalance co-
optimization”. First, “reordering” is performed to ensure
that the vertices in the same subset have continuous IDs.
Then, hashing-based partitioning can evenly partition the
vertices in each subset. Second, “co-optimization” per-
formed after partitioning in Section 4.3 divides the vertices
of each partition into three subsets by their degrees. The
subsets (i.e., large vertices, small vertices, and omissible
vertices) represent their workload. Since partitioning di-
vides the neighborList of each vertex, a vertex originally
belonging to large vertices subset might change to the small
vertices subset. To track which subset a vertex belongs
to after partitioning, we propose a mapping between the
partitioning and co-optimization steps.

u’s total #neighbor = 200

Original

Large m
CTA > P [ v )

vertices U= 29 \7/
Warp { Smgll <| Now 67 neighbors

vertices /\ Sub .

ubtask 1

Omit Omissible [ u ) POl

vertices \\/ | P

Hash 21

Fig. 10: Integrating graph partitioning with collision and
workload balance co-optimization in Section 4.3.

Figure 10 uses the subtask 1 from Figure 9(b) to explain
the idea. The neighbor List of vertex u is divided into three
partitions (i.e., Py, P21 and P»2) as show in Figure 10. For
this specific subtask vertex u, P»o determines the workload
of vertex u. We assume u, in total, has 200 neighbors and
belongs to the large vertices subset before partition. Because
partitioning distributes u’s neighbor List across Pag, P> and
P55, we assume u has 67 neighbors in Pso. In this case, u
should belong to the small vertices subset after partition.
Therefore, for subtask 1 in Figure 9(b), we treat u as small
vertex during co-optimization step.

6 EVALUATION

TrRUST! is implemented with around 1,500 lines of
C++/CUDA code and compiled with CUDA Toolkit 10.2,
g++ 7.4.0, MPICH-3.3, and the optimization flag is set to
-O3. We evaluate TRUST on two servers: i) a server with
Intel(R) Xeon(R) Gold 6248 CPU with 40 cores, 512 GB main
memory, and 8 V100 GPUs, each with 32 GB memory; ii)
Summit supercomputer [87] with 512 GB memory, powered
by dual-socket 22-core POWER 9 processor along with 6
V100 GPUs, each of which installs 16 GB GPU memory.
We use Summit only when evaluating the scalability of
medium and extremely large graphs in Section 6.5. For the
remaining experiments, we use server (i). The runtime of
triangle counting is measured once the graph is loaded on
GPUs for comparison with state-of-the-art systems.

For MPI-based implementation with multi-GPUs, we use
the maximum kernel time across all participating GPUs as
the triangle counting time. Unless otherwise specified, the
reported statistics are the average of ten runs.

1. Available at https:/ /github.com/wzbxpy/TRUST
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6.1 TRUST vs. State-of-the-Art

This section compares TRUST with two state-of-the-art trian-
gle counting systems, i.e., Ligra [17], [88] and TriCore [21].
Particularly, Ligra is a lightweight graph processing frame-
work. We compile the Ligra source code with Intel CILK li-
brary to achieve peak performance and test Ligra on Intel(R)
Xeon(R) Gold 6248 CPU with 40 cores and 512 GB main
memory. TriCore is regarded as the optimal GPU-based
triangle counting system that won the 2018 GraphChallenge
champion [23]. TriCore and TRUST run on a single V100
GPU. Comparing the prices, one Intel(R) Xeon(R) Gold 6248
CPU costs around $6,600 [89] while a single V100 GPU costs
around $11,500 [90].
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Fig. 11: The runtime of TRUST, TriCore, and Ligra.

As shown in Figure 11, TRUST achieves 50.1x and
4,177.4x speedup on average over TriCore and Ligra, re-
spectively. Comparing to TriCore, TRUST achieves 465.0x
speedup on the MA graph. For the remaining graphs, the
speedup ranges from 3.4x (TW) to 17.2x (3D). TriCore
enjoys irregular graphs (like power-law graphs) but suffers
from regular graphs like 3D, RA, and RM. The reason lies
in the fact that TriCore is designed upon binary-search,
which is more efficient when the degree differences between
vertices are larger. Comparing to Ligra, TRUST beats Ligra
by 43,697.3x on the MA graph. For the remaining graphs,
the speedup ranges from 7.4x (3D) to 919.7x (IT). The
general trend is that TRUST has significant margins over
Ligra when the graph is larger and more irregular.

6.2 TRuUsST vs. GraphChallenge Champions

This section compares TRUST against H-INDEX [25], Bisson
et al. [34], and Yacsar et al. [35] which are the champions
in 2018 and 2019 GraphChallenge [16]. Yacsar et al. follow
matrix-multiplication approach for triangle counting. Since
Yacsar et al. [36] is the updated and faster version of
2018 GraphChallenge champion [35], we only choose [36]
among [35], [36] for comparison. H-INDEX proposes to
hash the shorter neighborList for triangle counting while
Bisson et al. relies upon bitmap-based intersection to do
triangle counting. Table 5 shows the speedup achieved by
TRUST over these three related works. Since Bisson et al.
and Yacsar et al. have not open-sourced their source code,
Table 5 only includes three large graphs for Bission et al.
and two large graphs for Yacsar et al. that are presented in
manuscripts [34] and [36], respectively. In the manuscripts,
Bission et al. is evaluated on one V100 GPU, and Yacsar et al.
is evaluated on a DGX machine equipped with eight V100
GPUs and CPU with 40 cores. Yacsar et al. also utilizes both
CPU and GPUs to count the triangles. We run TRUST and
H-INDEX on one V100 GPU.

As shown in Table 5, TRUST constantly outperforms the
champions. On average, TRUST achieves 7.1x and 21.3x
speedup over Bission et al. and H-INDEX, respectively. We



Yacsar et al.
3.133s

H-INDEX
12.001s
0.044s
74.424s

Bisson et al.
3.935s
0.023s
3.626s

TRUST
FS 2.241s
MA | 0.001s
TW | 3.158s

TABLE 5: TRUST vs. GraphChallenge champions. Note, Yac-
sar et al. uses eight V100 GPUs, while the rest of the projects
use one V100 GPU.

Speedup
1.76x
18.44x
1.14x

Speedup
5.36x
34.84x
23.57x

Speedup
1.39x

4.582s 1.45x

also notice that the margin of TRUST over Bisson et al. on
TW and FS is relatively small as bitmap tends to work
well for graphs with a relatively small number of vertices.
Because of large bitmap sizes, Bisson et al. fails to handle the
extremely large graphs (such as CW and UK), which are all
supported by TRUST. Comparing with Yacsar et al., TRUST,
even with é of the GPUs, is 1.4x faster on average. Further,
comparing with DistTC [24], a recent distributed triangle
counting on GPUs, DistTC with 16 P100 GPUs is slower
(3.92s in TW and 2.49s in FS) than TRUST with 1 V100 GPU.
Note, since DistTC is not a GraphChallenge champion, we
do not include this result in Table 5.

6.3 Impact of Various Optimizations
& 10%
g
) g
[ VH+CO+VC+RO (IN) =
[JVH+CO+VC+RO (OUT) %—
0
(%10
3D RA RM CP FS OR WK GH IT MA TW

(a) Smaller impacts.

(b) Larger impacts.
Fig. 12: Performance impacts of VH (vertex-centric hashing),
CO (co-optimizing workload imbalance and hash collision),
VC (virtual combination), and RO (vertex reordering). H-
INDEX is used as the baseline (BS) for comparison.

Figures 12(a) and 12(b) show the impacts of various
optimizations categorized in terms of speedup. VH (vertex-
centric hashing) achieves, on average, 2.0x speedup com-
paring with the baseline and upto 3.5x for FS graph. In
contrast, for MA graph, VH is 5% slower as most of the
vertices in MA graph have degree < 2. The reason is that
the overheads of handling workload imbalance in vertex-
centric design outweigh the benefit of hashTable construc-
tion. CO (co-optimizing workload imbalance and hash col-
lision) achieves only 1% speedup on small impact graphs
but achieves 18.0x speedup on large impact graphs as it
balances the workload of highly skewed graphs. But CO is
slower on FS (18%) and OR (6%) graphs as using CTA to
process vertex leads to more idling threads due to the small
workload. With the addition of VC (Virtual Combination),
we observe another 50% speedup on average across all
graphs. However, as the degree distribution of RM and RA
graphs are suitable for warp-centric processing, VC affects
the performance for those graphs slightly. Furthermore, we
test two RO (vertex reordering) methods: Indegree (IN)
and Outdegree (OUT). IN and OUT achieves 11% and 18%
speedup on average across all graphs, respectively. In most
of the graphs, OUT outperforms IN.

6.4 Profiling Reordering and Workload Balancing

Profiling vertex reordering. Figure 13 further profiles
IN and OUT reordering techniques. Degree sorting tech-
nique [91] is used as the baseline (BS). We use Nvprof [92]
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Fig. 13: Percentage of L2 cache hit rate (L2) and warp level

instructions for shared loads (INST) compared with baseline
(BS) for IN and OUT reordering techniques.

T™W WK

to profile TRUST’s reordering techniques. The performance
gain of reordering can be measured from two aspects: i)
reduction of max collision in hashTable and ii) improve-
ment in the data locality of the neighborList. We profile
max collision with warp level instructions for shared loads
(INST), with the general idea being fewer collisions results
in fewer memory reads. For profiling improvement in data
locality, we use L2 cache hit rate (L2). Figure 13 shows that
IN reduces INST by 6.8% and improves L2 by 5.2% on
average. Similarly, OUT reduces INST by 8.1% and improves
L2 by 6.3% on average.

Profiling workload balancing. We perform another ex-
periment to test TRUST’s four intra-vertex workload balanc-
ing methods - warp-centric (WC), subwarp (SW), physical
combination (PC), and virtual combination (VC). For SW,
we test SW of size 8 and 16.

3

—WC ‘ -‘S\N(S)‘
[Isw (16) IPC
Ve

N

Speedup

3D RA RM CP FS GH IT MA OR
Fig. 14: Profiling intra-vertex workload balancing methods.

TW WK

Figure 14 shows the speedup for different methods with
WC as the baseline. On average, SW provides 40% and 45%
speedup for subwarp of size 8 and 16, respectively. But we
also observe that different graphs prefer dissimilar subwarp
sizes, making it hard to pick one method for all graphs.
When it comes to PC, it is 45% worse than the baseline on
average, blaming the cost of moving various neighbor Lists
into a gigantic array. VC achieves 55% speedup over WC
on average. Note that VC is slightly worse than SW (8) for
relatively small degree graphs, such as 3D, and CP graphs
and SW (16) for IT, RA, and RM graphs. However, SW (8)
and SW (16) are significantly worse than VC for the rest
of the graphs. Although the optimal SW sizes could yield
the best performance, considering the difficulty with SW in
selecting the correct SW size (8 or 16), TRUST chooses the
VC for intra-vertex workload balancing.

6.5 TRUST Scalability

In this section, we discuss the scalability of TRUST with
the increase of GPUs. For small and medium graphs, the
number of workload partitions is equal to the number of
available GPUs, ie., m = #GPUs. For extremely large
graphs, each graph needs to be partitioned into smaller
partitions which can fit in the GPU global memory. To
achieve the best performance, we compute the smallest n
that satisfies 32‘5 * edge size < GPU memory size. Then,
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(a) Small graph scalability. (b) Medium graph scalability.
Fig. 15: Scalability for small and medium graphs.

we set m = #GPUs/n3. For the experiment, we set n = 8§,
m = 1 for 512 GPUs, and n = 8, m = 2 for 1,024 GPUs.

Small graphs. As shown in Figure 15(a), TRUST achieves
3.3x to 6.8x speedup from 1 to 8 GPUs for four small
graphs. For OR and WK graphs, TRUST achieves almost
linear scalability. In case of smaller workloads, like the
MA graph, the scalability is limited when the computation
resource is more than the number of tasks. In this situation,
the runtime time is limited by the specific warp or CTA that
processes the largest vertex.

Medium graphs. Figure 15(b) shows the scalability of
TRUST for graphs of medium size. Particularly, TRUST
achieves 649.3x and 660.3 x speedup for RA and RM graphs
with 1,024 GPUs, respectively. For the rest of the graphs, the
speedup is limited by their smaller workloads as discussed
earlier.

#GPU 512 GPUs 1,024 GPUs Space IR LiteTe
Measure Time Time IR Time Time IR Time IR
(@%Y 0.15532s | 1.10734 | 0.08181s | 1.10647 1.06411 -
UK 0.21023s | 1.11559 | 0.10942s | 1.11919 1.01359 1.70

TABLE 6: Scalability of extremely large graphs with 512 and
1,024 GPUs. Here, IR is short for imbalance ratio. Thus, Time
IR = max time/min time. And Space IR = max partition
size/min partition size.

Extremely large graphs. As shown in Table 6, TRUST
achieves, on average, 1.9x speedup on CW and UK graphs
while scaling from 512 to 1,024 GPUs. Further, looking into
the imbalance ratio (IR), we observe that TRUST’s graph par-
titioning achieves desirable workload (Time IR) and space
(Sapce IR) balance. Particularly, both time IR and space IR
lie between 1 and 1.1 for both graphs on 1,024 GPUs. In
contrast, LiteTe [42], which uses range-based partitioning
scheme, has a much higher time IR, i.e., 1.7 for UK graph.

7 CONCLUSION

This paper introduces TRUST that reloads triangle counting
on GPUs. Particularly, it introduces vertex-centric hashing-
based algorithm, collision and workload balancing opti-
mizations, and workload and graph collaborative partition-
ing techniques. Taken together, TRUST, to the best of our
knowledge, is the first work that advances triangle counting
beyond the trillion TEPS rate.
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